Removability theorems for solutions of degenerate elliptic partial differential equations

Pekka Koskela and Olli Martio

1. Introduction

Removable singularities for Hölder continuous harmonic functions are completely known, see $[C_1]$, $[C_2, p. 91]$ and [KW].

Theorem A. Let Ω be an open set in \mathbb{R}^n and let E be a relatively closed subset of Ω . Then E is removable for harmonic functions of $\Omega \setminus E$ which are locally Hölder continuous in Ω with exponent $0 < \alpha < 1$ if and only if the $(n-2+\alpha)$ -dimensional Hausdorff measure of E is zero.

We recall that a function $u: \Omega \to \mathbf{R}$ is said to be locally Hölder continuous in Ω with exponent $0 < \alpha \le 1$ if for each compact subset K of Ω there is $M < \infty$ such that

$$(1.1) |u(x) - u(y)| \le M|x - y|^{\alpha}$$

for all x and y in K.

In this paper we consider an analogous question for solutions of second order degenerate elliptic partial differential equations. For linear equations we refer the reader to [HP]. We call a function u \mathcal{A} -harmonic if u is a continuous weak solution of the equation

(1.2)
$$\operatorname{div} \mathcal{A}(x, \nabla u(x)) = 0$$

with $|\mathcal{A}(x,\xi)| \approx |\xi|^{p-1}$, p>1. For the exact requirements on the mapping \mathcal{A} we refer the reader to Section 3. Here we point out that the prototype of equation (1.2) is the p-harmonic equation

(1.3)
$$\operatorname{div}(|\nabla u|^{p-2}\nabla u) = 0.$$