A smooth pseudoconvex domain in \mathbb{C}^2 for which L^{∞} -estimates for $\overline{\partial}$ do not hold

Bo Berndtsson(1)

Let \mathcal{D} be a smoothly bounded domain in \mathbb{C}^n . It is well known (see [HL] and $[\emptyset]$) that if \mathcal{D} is strictly pseudoconvex then we can solve the $\bar{\partial}$ -equation with estimates in L^p for any $1 \le p \le \infty$. It has also been known for some time that this is no longer true if \mathcal{D} is merely pseudoconvex. Namely, Sibony [S2] found an example of such a domain in \mathbb{C}^3 where L^{∞} -estimates do not hold. The reader should also consult the paper [FS1] which contains a discussion of L^p -estimates in general and many counterexamples to this type of questions. However, all counterexamples known seem to treat the case $n \ge 3$ and L^p -estimates for p > 2.

In this paper we shall prove

Theorem 1. There is a smoothly bounded Hartogs domain in \mathbb{C}^2 , and a $\overline{\partial}$ -closed (0,1)-form g in \mathcal{D} , which extends continuously to $\overline{\mathcal{D}}$, such that the equation $\overline{\partial}u=g$ has no bounded solution.

Recall that a Hartogs domain is a domain of the form

(1)
$$\mathcal{D} = \{(z,w); |w| < e^{-\varphi(z)}\}$$

where φ is subharmonic. If e.g. φ is smooth in the disk and

$$\varphi = \frac{1}{2}\log\frac{1}{1-|z|^2}$$

near the boundary of the disk, then $\partial \mathcal{D}$ will be smooth.

There is a special reason why we are interested in the case n=2. The form g in Theorem 1 extends continuously to $\partial \mathcal{D}$. So, the same example shows that we don't have L^{∞} -estimates for $\bar{\partial}_b$ either. But in \mathbb{C}^2 there is a duality between $\bar{\partial}_b$ in L^{∞} and in L^1 . Therefore we get

⁽¹⁾ Supported by Naturvetenskapliga Forskningsrådet