Multiplicities of recurrence sequences

by
HANS PETER SCHLICKEWEI

Universität Ulm
Ulm, Germany

1. An introduction

We will study equations

$$
\begin{equation*}
\sum_{i=1}^{r} f_{i}(m) \alpha_{i}^{m}=0 \tag{1.1}
\end{equation*}
$$

in the variable $m \in \mathbf{Z}$. Here the f_{i} are nonzero polynomials with complex coefficients of respective degrees $k_{i}(1 \leqslant i \leqslant r)$ and we put

$$
\begin{equation*}
k_{1}+\ldots+k_{r}+r=q . \tag{1.2}
\end{equation*}
$$

We suppose that the α_{i} are nonzero elements of a number field K with

$$
\begin{equation*}
[K: \mathbf{Q}]=d \tag{1.3}
\end{equation*}
$$

and that moreover for each pair i, j with $1 \leqslant i<j \leqslant r$,

$$
\begin{equation*}
\alpha_{i} / \alpha_{j} \text { is not a root of unity. } \tag{1.4}
\end{equation*}
$$

We prove
Theorem 1.1. Assume that we have (1.2), (1.3), (1.4). Then equation (1.1) has not more than

$$
\begin{equation*}
d^{6 q^{2}} 2^{2^{28 q!}} \tag{1.5}
\end{equation*}
$$

solutions $m \in \mathbf{Z}$.
Results on equations (1.1) have been derived recently in [14] and shortly afterwards in [12]. However in both papers the bound for the number of solutions is only "semiuniform", as it depends upon q, d and moreover upon ω, which is defined as the number

