ON CHARACTER SUMS IN FINITE FIELDS.

Вy

H. DAVENPORT of Manchester.

1. Introduction.

Let $q = p^e$ be a power of a prime p, and let [q] denote the finite field (or "Galois field") of q elements. Let $f_1(x), \ldots, f_r(x)$ be polynomials over [q], and let χ_1, \ldots, χ_r be multiplicative characters of [q] with the convention $\chi(0) = 0$. A character sum is an expression of the form

(1)
$$S(f, \chi) = \sum_{x \text{ in } [q]} \chi_1(f_1(x)) \ldots \chi_r(f_r(x)).$$

We shall make the (trivial) simplification of supposing that χ_1, \ldots, χ_r are nonprincipal characters, and that $f_1(x), \ldots, f_r(x)$ are different normalised¹ polynomials, each irreducible over [q]. Let k_1, \ldots, k_r denote the degrees of these polynomials, and let $K = k_1 + \cdots + k_r$.

In connection with any such character sum we define a function $L(f, \chi; s)$ of the complex variable $s = \sigma + it$ which is in fact a polynomial in q^{-s} of degree K - 1. These L-functions are essentially the same as those obtained by Hasse² as factors of the congruence zeta-function of an algebraic function-field generated by an equation of the form $y^n = f(x)$. The object of this paper is to give a more direct and elementary account of these L-functions.

The definition is as follows. Let (f, g) denote the resultant of two normalised polynomials f(x), g(x) over [q].³ Let

 $^{^1}$ A normalised polynomial is one in which the coefficient of the highest power of x is 1. 2 Journal für Math. (Crelle), 172 (1934), 37–54.

 $f_{-}^{*}(f,g) = \prod_{\Phi} f(\Phi)$, where Φ runs through the roots of g(x) = 0.