ON CHARACTER SUMS IN FINITE FIELDS.

By

H. DAVENPORT
of Manchester.

I. Introduction.

Let $q=p^{e}$ be a power of a prime p, and let $[q]$ denote the finite field (or "Galois field") of q elements. Let $f_{1}(x), \ldots, f_{r}(x)$ be polynomials over $[q]$, and let $\chi_{1}, \ldots, \chi_{r}$ be multiplicative characters of $[q]$ with the convention $\chi(0)=0$. A character sum is an expression of the form

$$
\begin{equation*}
S(f, \chi)=\sum_{x \text { in }[q]} \chi_{1}\left(f_{1}(x)\right) \ldots \chi_{r}\left(f_{r}(x)\right) . \tag{I}
\end{equation*}
$$

We shall make the (trivial) simplification of supposing that $\chi_{1}, \ldots, \chi_{r}$ are nonprincipal characters, and that $f_{1}(x), \ldots, f_{r}(x)$ are different normalised ${ }^{1}$ polynomials, each irreducible over $[q]$. Let k_{1}, \ldots, k_{r} denote the degrees of these polynomials, and let $K=k_{1}+\cdots+k_{r}$.

In connection with any such character sum we define a function $L(f, \chi ; s)$ of the complex variable $s=\sigma+i t$ which is in fact a polynomial in q^{-s} of degree $K-1$. These L-functions are essentially the same as those obtained by Hasse ${ }^{2}$ as factors of the congruence zeta-function of an algebraic function-field generated by an equation of the form $y^{n}=f(x)$. The object of this paper is to give a more direct and elementary account of these L-functions.

The definition is as follows. Let (f, g) denote the resultant of two normalised polynomials $f(x), g(x)$ over $[q] .^{3}$ Let

[^0]
[^0]: ${ }^{1}$ A normalised polynomial is one in which the coefficient of the highest power of x is I .
 ${ }^{2}$ Journal für Math. (Crelle), 172 (1934), 37-54.
 ${ }^{3}(f, g)=\prod_{\Phi} f(\Phi)$, where Φ runs through the roots of $g(x)=0$.

