The xi function

by

FRITZ GESZTESY

and

BARRY SIMON

University of Missouri Columbia, MO, U.S.A. California Institute of Technology Pasadena, CA, U.S.A.

1. Introduction

Despite the fact that spectral and inverse spectral properties of one-dimensional Schrödinger operators $H = -d^2/dx^2 + V$ have been extensively studied for seventy-five years, there remain large areas where our knowledge is limited. For example, while the inverse theory for operators on $L^2((-\infty,\infty))$ is well understood in case V is periodic [12], [24], [25], [35], [39]–[42], [49], it is not understood in case $\lim_{|x|\to\infty} V(x) = \infty$ and H has discrete spectrum.

Our goal here is to introduce a special function $\xi(x,\lambda)$ on $\mathbf{R} \times \mathbf{R}$ associated to H which we believe will be a valuable tool in the spectral and inverse spectral theory. In a sense we will make precise, it complements the Weyl m-functions, $m_{\pm}(x,\lambda)$.

A main application of ξ which we will make here concerns a generalization of the trace formula for Schrödinger operators to general V's.

Recall the well-known trace formula for periodic potentials: Let V(x)=V(x+1). Then, by Floquet theory (see, e.g., [10], [37], [44]),

$$\operatorname{spec}(H) = [E_0, E_1] \cup [E_2, E_3] \cup \dots,$$

a set of bands. If V is C^1 , one can show that the sum of the gap sizes is finite, that is,

$$\sum_{n=1}^{\infty} |E_{2n} - E_{2n-1}| < \infty. \tag{1.1}$$

For a fixed y, let H_y be the operator $-d^2/dx^2+V$ on $L^2([y,y+1])$ with u(y)=u(y+1)=0 boundary conditions. Its spectrum is discrete, that is, there are eigenvalues $\{\mu_n(y)\}_{n=1}^{\infty}$ with

$$E_{2n-1} \leqslant \mu_n(y) \leqslant E_{2n}. \tag{1.2}$$

This material is based upon work supported by the National Science Foundation under Grant DMS-9101715. The Government has certain rights in this material.