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1. Introduction

Despite the fact that spectral and inverse spectral properties of one-dimensional Schré-
dinger operators H=—d?/dz*+V have been extensively studied for seventy-five years,
there remain large areas where our knowledge is limited. For example, while the inverse
theory for operators on L?({—00, c0)) is well understood in case V is periodic [12], [24],
[25], [35], [39]-[42], [49], it is not understood in case limj;_ V(x)=00 and H has
discrete spectrum.

Our goal here is to introduce a special function £(z, ) on RxR associated to H
which we believe will be a valuable tool in the spectral and inverse spectral theory. In a
sense we will make precise, it complements the Weyl m-functions, m+(z, A).

A main application of £ which we will make here concerns a generalization of the
trace formula for Schrédinger operators to general V's.

Recall the well-known trace formula for periodic potentials: Let V(z)=V(z+1).
Then, by Floquet theory (see, e.g., [10], [37], [44]),

spec(H) = [Ey, E1]U[E2, E3]U... ,

a set of bands. If V is C, one can show that the sum of the gap sizes is finite, that is,

o0

> |Ban—Ean-1| <o0. (1.1)
n=1
For a fixed y, let H, be the operator —d%/dz*+V on L?([y,y+1]) with u(y)=
u(y+1)=0 boundary conditions. Its spectrum is discrete, that is, there are eigenval-
ues {j1n(y)}52 with
Eon—1< pn(y) < Eop. (1.2)
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