ON THE UNSYMMETRIC TOP.*

By

JOHN J. CORLISS

of ANN ABBOB, Mich., U.S.A.

The problem of the motion of a heavy rigid body about a fixed point is an old problem, — one of which much has been written but of which little is known. Euler¹ first stated the equations of motion in the final definitive and elegant form in use today. They are

(1)
$$I_1 \omega_1 + (I_3 - I_2) \omega_2 \omega_3 = H_1$$

(2)
$$I_2 \omega_2 + (I_1 - I_3) \omega_1 \omega_3 = H_2$$

(3)
$$I_3 \omega_3 + (I_2 - I_1) \omega_1 \omega_2 = H_3.$$

The angular velocities ω_1 , ω_2 and ω_3 are connected with Euler's angles Θ , Φ and Ψ by the equations:

(4)
$$\Theta = \omega_1 \cos \Phi - \omega_2 \sin \Phi$$

(5)
$$\Phi = -\omega_1 \sin \Phi \cot \Theta - \omega_2 \cos \Phi \cot \Theta + \omega_2$$

(6)
$$\Psi = \omega_1 \sin \Phi \csc \Theta + \omega_2 \cos \Phi \csc \Theta$$

or by the equations:

(7)
$$\omega_1 = \Theta \cos \Phi + \Psi \sin \Theta \sin \Phi$$

(8)
$$\omega_{g} = -\Theta \sin \Phi + \Psi \sin \Theta \cos \Phi$$

(9) $\omega_3 = \dot{\Phi} + \dot{\Psi} \cos \Theta.$

* I wish to thank Professor Peter Field of the University of Michigan, under whose direction this investigation was carried out, for his many suggestions and encouragement.

¹ Euler: Mémoires de L'Académie de Berlin, 1758.