ON FOURIER TRANSFORMS OF MEASURES WITH COMPACT SUPPORT

BY

A. BEURLING and P. MALLIAVIN(1)

Institute for Advanced Study, Princeton, N.J., U.S.A.

Introduction

This paper will deal with the set \mathcal{M} of measures with compact support on the real line. To each positive number a we associate the set \mathcal{M}_a consisting of measures with support contained in [-a, a]. $\hat{\mathcal{M}}$ and $\hat{\mathcal{M}}_a$ will denote the sets of Fourier transforms $\hat{\mu}$ for μ belonging to \mathcal{M} and \mathcal{M}_a respectively. By reason of convenience the identically vanishing measure shall not be included in \mathcal{M} or \mathcal{M}_a .

Our main objective is to decide if for each a > 0 there exists $\mu \in \mathcal{M}_a$ which tend to 0 in a prescribed sense as $x \to \pm \infty$. Since each $\hat{\mu}(x) \in \hat{\mathcal{M}}$ is the restriction to the real axis of an entire function of exponential type $\leq a$, bounded for real x, we know by a classical theorem that

$$J(\log^{-}|\hat{\mu}|) = \int_{-\infty}^{\infty} \frac{\log^{-}|\hat{\mu}(x)|}{1+x^{2}} dx > -\infty.$$
 (0.0)

This property is therefore a necessary condition.

Let $w(x) \ge 1$ be a measurable function on the real line and let L_w^p $(1 \le p \le \infty)$ be the space of measurable functions f(x) with norm

$$||f|| = \left\{\int_{-\infty}^{\infty} |f(x)|^p w(x)^p dx\right\}^{1/p}.$$

The following problem will be considered. Determine for a given p the set W_p of all weight functions $w(x) \ge 1$ subject to these two conditions:

(1) Partially supported by the Air Force Office of Scientific Research contract AF 49(638)-253.