INVARIANTS ASSOCIATED WITH SINGULARITIES OF ALGEBRAIC CURVES.

BY

TEMPLE RICE HOLLCROFT

of Aurora, New York.

1. Introduction. Each singularity of an algebraic curve f, with the exception of distinct nodes, cusps, bitangents and stationary tangents, is associated with two distinct sets of invariants. ${ }^{1}$ One set, in which the number of invariants is denoted by I_{p}, consists of the invariants among the coefficients of the equation in point coordinates of the curve f; the other set, in which the number is I_{l}, consists of the invariants among the coefficients in the line equation of f. The existence of both sets of invariants is necessary and sufficient for f to possess the designated singularity. Both I_{p} and I_{l} are independent of the order and class of f. The value of I_{l} for any given singularity is the same as the value of I_{p} for the reciprocal of this singularity.

An algebraic singularity, therefore, uniquely determines the two numbers I_{p} and I_{l} defined above. In this paper, the values of both I_{p} and I_{l} are found for a general algebraic singularity considered as defined by its constituent multiple points and their manner of combination. The chief problem is to find the value of I_{l} for a singularity so defined, that is, to determine the number of invariants among the coefficients of the equation of f in point coordinates associated with a general line singularity.

It has been proved by Lefschetz ${ }^{2}$ that each node of f accounts for one invariant and his Postulate of Singularities states that a cusp of f always accounts

[^0]
[^0]: ${ }^{1}$ The term sinvariants is used in this paper to mean an independent function of the coefficients of the equation of f whose vanishing is necessary in order that f possess a certain singularity.
 ${ }^{2}$ S. Lefschetz, On the existence of loci with given singularities, Transactions of the American Mathematical Society, Vol. 14 (1913), pp. 23-41.

