BEWEIS EINES SATZES

AUS DER

THEORIE DER ELLIPTISCHEN FUNCTIONEN

von

M. FALK in UPSALA.

Wenn man von dem Gebiete der Grösse k^2 alle reelle Werthe von $-\infty$ bis o und von +1 bis $+\infty$ (o und +1 inclus.) ausschliesst und jeder der Quadratwurzeln $\sqrt{1-k^2\sin^2\varphi}$ und $\sqrt{1-k'^2\sin^2\psi}$, wo

$$k'^2 = 1 - k^2$$

ist, denjenigen Werth beilegt, dessen erste Coordinate (der reelle Bestandtheil) positiv ist, so sind die Grössen K und K' durch die Werthe der bestimmten Integrale:

$$K = \int_{0}^{\frac{\pi}{2}} \frac{d\varphi}{\sqrt{1 - k^2 \sin^2 \varphi}}, \qquad K' = \int_{0}^{\frac{\pi}{2}} \frac{d\psi}{\sqrt{1 - k'^2 \sin^2 \psi}}$$

in eindeutiger Weise definirt.

Es handelt sich alsdann darum zu beweisen, dass K, K' immer endlich und von Null verschieden bleiben und dass K, K' und $\frac{K'}{K}$ positive erste Coordinaten haben.

Acta mathematica. 7. Imprimé le 22 Septembre 1885.