# SOME PROBLEMS OF DIOPHANTINE APPROXIMATION. 

## By

G. H. HARDY and J. E. LITTLEWOOD,<br>Trinity College, Cambridge.

I.

The fractional part of $n^{\boldsymbol{k}} \boldsymbol{\theta}$.

## I.o-Introduction.

I.oo. Let us denote by $[x]$ and ( $x$ ) the integral and fractional parts of $x$, so that

$$
(x)=x-[x], \quad 0 \leq(x)<\mathrm{x} .
$$

Let $\theta$ be an irrational number, and $\alpha$ any number such that $0 \leq \alpha<x$. Then it is well known that it is possible to find a sequence of positive integers $n_{1}, n_{2}, n_{3}, \cdots$ such that

$$
(\mathrm{I} .00 \mathrm{I}) \quad\left(n_{r} \theta\right) \rightarrow \alpha
$$

as $r \rightarrow \infty$.
It is necessary to insert a few words of explanation as to the meaning to be attributed to relations such as ( $I .001$ ), here and elsewhere in the paper, in the particular case in which $\alpha=0$. The formula (I.00I), when $\alpha>0$, asserts that, given any positive number $\varepsilon$, we can find $r_{0}$ so that

$$
-\varepsilon<\left(n_{r} \theta\right)-\alpha<\varepsilon \quad\left(r>r_{0}\right)
$$

The points ( $n_{r} \theta$ ) may lie on either side of $\alpha$. But $\left(n_{r} \theta\right.$ ) is never negative, and so, in the particular case in which $\alpha=0$, the formula, if interpreted in the obvious manner, asserts more than this, viz. that

$$
0 \leq\left(n_{r} \theta\right)<\varepsilon \quad\left(r>r_{0}\right)
$$

