SOME PROBLEMS OF DIOPHANTINE APPROXIMATION.

Bγ

G. H. HARDY and J. E. LITTLEWOOD,

TRINITY COLLEGE, CAMBRIDGE.

I.

The fractional part of $n^k \theta$.

1.0 — Introduction.

1.00. Let us denote by [x] and (x) the integral and fractional parts of x, so that

$$(x) = x - [x], \quad 0 \le (x) < 1.$$

Let θ be an irrational number, and α any number such that $0 \le \alpha < 1$. Then it is well known that it is possible to find a sequence of positive integers n_1, n_2, n_3, \cdots such that

 $(\mathbf{I}.00\mathbf{I}) \qquad (n_r\,\theta) \to \alpha$

as $r \to \infty$.

It is necessary to insert a few words of explanation as to the meaning to be attributed to relations such as (1.001), here and elsewhere in the paper, in the particular case in which $\alpha = 0$. The formula (1.001), when $\alpha > 0$, asserts that, given any positive number ε , we can find r_0 so that

$$-\varepsilon < (n_r \theta) - \alpha < \varepsilon \qquad (r > r_0).$$

The points $(n_r \theta)$ may lie on either side of α . But $(n_r \theta)$ is never negative, and so, in the particular case in which $\alpha = 0$, the formula, if interpreted in the obvious manner, asserts more than this, viz. that

$$0 \leq (n_r \theta) < \varepsilon$$
 $(r > r_0).$