Rigidity of time changes for horocycle flows

by

MARINA RATNER⁽¹⁾

University of California Berkeley, CA, U.S.A.

Let T_t be a measure preserving (m.p.) flow on a probability space (X, μ) and let τ be a positive integrable function on X, $\int_X \tau d\mu = \bar{\tau}$. We say that a flow T_t^{τ} is obtained from T_t by the time change τ if

$$T_t^{\tau}(x) = T_{w(x,t)}(x)$$

for μ -almost every (a.e.) $x \in X$ and all $t \in \mathbb{R}$, where w(x, t) is defined by

$$\int_0^{w(x,t)} \tau(T_u x) \, du = t.$$

The flow T_t^{τ} preserves the probability measure μ_{τ} on X defined by

$$d\mu_{\tau}(x) = (\tau/\bar{\tau}) d\mu(x), \quad x \in X.$$

We say that two integrable functions $\tau_1, \tau_2: (X, \mu) \rightarrow \mathbb{R}$ are homologous along T_t if there is a measurable $v: X \rightarrow \mathbb{R}$ such that

$$\int_0^t (\tau_1 - \tau_2) (T_u x) \, du = v(T_t x) - v(x)$$

for μ -a.e. $x \in X$ and all $t \in \mathbb{R}$. One can check that two time changes τ_1 and τ_2 are homologous via v if and only if (iff) the map $\psi_v: X \to X$ defined by

$$\psi_v(x)=T_{\sigma(x)}x,$$

^{(&}lt;sup>1</sup>) Partially supported by NSF grant MCS 81-02262.

¹⁻⁸⁶⁸²⁸² Acta Mathematica 156. Imprimé le 10 mars 1986