NON-HOMOGENEOUS TERNARY QUADRATIC FORMS.

By
H. DAVENPORT.
University College, London

1. This work has arisen from the consideration of possible extensions of Minkowski's theorem on the product of two non-homogeneous linear forms. If

$$
L_{\mathbf{1}}=\alpha x+\beta y, \quad L_{2}=\gamma x+\delta y
$$

are two linear forms with real coefficients, and c_{1}, c_{2} are any two real numbers, Minkowski's theorem asserts that there exist integers x, y such that

$$
\begin{equation*}
\left|\left(L_{1}+c_{1}\right)\left(L_{2}+c_{2}\right)\right| \leqq \frac{1}{4} \Delta, \tag{I}
\end{equation*}
$$

where $\Delta=|\alpha \delta-\beta \gamma|$, and we suppose $\Delta \neq 0$. It is conjectured that a similar result holds for the product of n non-homogeneous linear forms in n variables, with 2^{-n} in place of $\frac{1}{4}$. So far this conjecture has been proved only for $n=3$, by Remak, and for $n=4$, by Dyson.

Minkowski's theorem can be stated in another form, which suggests other possible extensions. Write

$$
L_{1} L_{2}=a x^{2}+b x y+c y^{2}=Q(x, y) ;
$$

then $Q(x, y)$ is an indefinite binary quadratic form with discriminant

$$
b^{2}-4 a c=d^{\circ}
$$

Determine real numbers x_{0}, y_{0} so that

$$
c_{1}=\alpha x_{0}+\beta y_{0}, \quad c_{2}=\gamma x_{0}+\delta y_{0}
$$

Then Minkowski's theorem asserts that for any indefinite binary quadratic form $Q(x, y)$, and any real x_{0}, y_{0}, there exist integers x, y such that

$$
\begin{equation*}
\left|Q\left(x+x_{0}, y+y_{0}\right)\right| \leqq \frac{1}{4} \boldsymbol{d} . \tag{2}
\end{equation*}
$$

