Everywhere discontinuous harmonic maps into spheres

by

TRISTAN RIVIÈRE

Ecole Normale Supérieure de Cachan Cachan, France

1. Introduction

Let Ω be a bounded domain of \mathbf{R}^n , S^2 the unit sphere of \mathbf{R}^3 and (Σ, h) a surface homeomorphic to S^2 with a metric h. We may assume, using the Nash-Moser theorem, that Σ is isometrically imbedded in some Euclidean space \mathbf{R}^k . We consider the Sobolev space

$$H^1(\Omega, \Sigma) = \{ u \in H^1(\Omega, \mathbf{R}^k) : u(x) \in \Sigma, \text{ a.e. } x \in \Omega \}.$$

Let $E(u) = \int_{\Omega} |\nabla u|^2$ be the Dirichlet energy for any u in $H^1(\Omega, \Sigma)$. For a sufficiently small neighborhood V of Σ in \mathbf{R}^k the projection π of a point x of V is well defined. Weakly harmonic maps from Ω into Σ are critical points in $H^1(\Omega, \Sigma)$ of the Dirichlet energy in the following way:

$$u$$
 is weakly harmonic if $\forall \xi \in C_c^{\infty}(\Omega, \mathbf{R}^n), \frac{d}{dt} E(\pi(u+t\xi))\Big|_{t=0} = 0.$ (1)

This is equivalent to the fact that u verifies the Euler-Lagrange equation

$$-\Delta u = A(u)(\nabla u, \nabla u) \text{ in } \mathcal{D}'(\Omega, \mathbf{R}^m), \quad u \in \Sigma \text{ a.e.},$$
 (2)

where A(u) is the second fundamental form of Σ and where we have used the notation

$$A(u)(\nabla u,\nabla u)=A(u)\left(\frac{\partial u}{\partial x},\frac{\partial u}{\partial x}\right)+A(u)\left(\frac{\partial u}{\partial y},\frac{\partial u}{\partial y}\right)+A(u)\left(\frac{\partial u}{\partial z},\frac{\partial u}{\partial z}\right).$$

In this paper we are interested in the singular set of such maps.

The system (2) is non-linear elliptic, and the non-linearity, produced by the fact that our map takes its values in a non-flat manifold, has a quadratic growth for the gradient:

$$-\Delta u = f(u, \nabla u) \text{ in } \mathcal{D}'(\Omega, \mathbf{R}^m) \text{ where } |f(x, p)| \le C(|x|^s + |p|^2).$$
 (3)