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0. Introduction

In this paper, we shall be looking at a special class of bordered (algebraic) varieties that
are contained in the bidisk D? in C2.

Definition 0.1. A non-empty set V in C? is a distinguished variety if there is a
polynomial p in Clz,w] such that

V={(z,w)eD?: p(z,w) =0}

and such that .
Vno(D?) =VNn (D)% (0.2)

Condition (0.2) means that the variety exits the bidisk through the distinguished
boundary of the bidisk, the torus. We shall use 8V to denote the set given by (0.2):
topologically, it is the boundary of V' within Z,, the zero set of p, rather than in all
of C2. We shall always assume that p is chosen to be minimal, i.e. so that no irreducible
component of Z, is disjoint from D? and so that p has no repeated irreducible factors.
Why should one single out distinguished varieties from other bordered varieties?

One of the most important results in operator theory is T. Andd’s inequality |7) (see
also [12] and [24]). This says that if 77 and T5 are commuting operators, and both of
them are of norm 1 or less, then for any polynomial p in two variables, the inequality

|p(T1, T2) || <llplip> (0.3)

holds. And®’s inequality is essentially equivalent to the commutant lifting theorem of
B. Sz.-Nagy and C. Foiag [23]—see, e.g., [20] for a discussion of this.
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