Distinguished varieties

by

JIM AGLER

and

JOHN E. MCCARTHY

University of California, San Diego La Jolla, CA, U.S.A. Washington University St. Louis, MO, U.S.A.

0. Introduction

In this paper, we shall be looking at a special class of bordered (algebraic) varieties that are contained in the bidisk \mathbf{D}^2 in \mathbf{C}^2 .

Definition 0.1. A non-empty set V in \mathbb{C}^2 is a distinguished variety if there is a polynomial p in $\mathbb{C}[z,w]$ such that

$$V = \{(z, w) \in \mathbf{D}^2 : p(z, w) = 0\}$$

and such that

$$\overline{V} \cap \partial(\mathbf{D}^2) = \overline{V} \cap (\partial \mathbf{D})^2.$$
 (0.2)

Condition (0.2) means that the variety exits the bidisk through the distinguished boundary of the bidisk, the torus. We shall use ∂V to denote the set given by (0.2): topologically, it is the boundary of V within Z_p , the zero set of p, rather than in all of \mathbb{C}^2 . We shall always assume that p is chosen to be minimal, i.e. so that no irreducible component of Z_p is disjoint from \mathbb{D}^2 and so that p has no repeated irreducible factors. Why should one single out distinguished varieties from other bordered varieties?

One of the most important results in operator theory is T. Andô's inequality [7] (see also [12] and [24]). This says that if T_1 and T_2 are commuting operators, and both of them are of norm 1 or less, then for any polynomial p in two variables, the inequality

$$||p(T_1, T_2)|| \le ||p||_{\mathbf{D}^2} \tag{0.3}$$

holds. Andô's inequality is essentially equivalent to the commutant lifting theorem of B. Sz.-Nagy and C. Foiaş [23]—see, e.g., [20] for a discussion of this.

The first author was partially supported by the National Science Foundation. The second author was partially supported by National Science Foundation Grant DMS 0070639.