Correction to
 "Separatrices at singular points of planar vector fields"

by

STEPHEN SCHECTER and MICHAEL F. SINGER
(Acta Math., 145 (1980), 47-78)

Professor M. E. Sagalovich has kindly provided us a detailed explanation of his examples, published in [2], of singular points of degree $d, d \geqslant 3$, with $4 d-2$ separatrices. We had been aware of these examples, but had erroneously concluded that they had fewer separatrices. These examples show that Theorem 3.13 of [3], which asserts that a singular point of degree $d, d \geqslant 3$, can have at most $4 d-4$ separatrices, is wrong. The correct bound is $4 d-2$, as had already been proved by Sagalovich in [1].

The error in our proof occurs at the bottom of p. 75. Under discussion there are Dumortier pictures in which the singularities on Γ, the homeomorph of j^{1} that represents the original singularity, are (1) two saddles, each of which has two of its separatrices lying within Γ; (2) some corners; (3) singularities resulting from the blowup of a single special singularity. See [3] for definitions; also see Figure 18 of [3]. In our argument we implicitly assume that each of the two arcs into which Γ is divided by the two saddles must contain a subarc resulting from the blow-up of the special singularity. This is the case in Figure 18 of [3], but it need not be true. It is not true in Sagalovich's examples.

Our argument for Theorem 3.13 in fact demonstrates the following: Suppose a singularity of degree d has $4 d-2$ separatrices. Then its tree \mathscr{T} has a subtree \mathscr{T} " whose terminal vertices are (1) one vertex W_{1}, also terminal in \mathscr{T}, that represents two saddles in the Dumortier picture, each of which has two separatrices lying within Γ; (2) some corners, also terminal in \mathscr{T}, whose separatrices lie within Γ; (3) degree one saddles V_{1}, \ldots, V_{d-1}, the successors of a single nonterminal special vertex V. (As remarked on p. 75 of [3], V_{1}, \ldots, V_{d-1} need not be terminal in \mathscr{T}. In Sagalovich's examples, they are not.) In the Dumortier picture associated with $\mathscr{T}^{\prime \prime}$, one of the two arcs into which Γ is divided by the two saddles corresponding to W_{1} does not contain a subarc resulting from the blow-up of V.

