A geometric proof of Mostow's rigidity theorem for groups of divergence type

by

STEPHEN AGARD

University of Minnesota Minneapolis, U.S.A.

1. Introduction

The nature of the "boundary map" of a geometric isomorphism between discrete Möbius groups Γ , Γ' acting on upper half *n*-space \mathbf{U}^n , has been studied extensively under various hypotheses on Γ . Without undue elaboration at this point, it comes down to a homeomorphism g of $\mathbf{R}^{n-1} = \partial \mathbf{U}^n$, with the property that for every $A \in \Gamma$, the composition $g \cdot A \cdot g^{-1}$ belongs to Γ' (as Γ' acts on $\mathbf{R}^{n-1} = \partial \mathbf{U}^n$).

The most dramatic result [8] is a special case of what has become known as Mostow's rigidity theorem, and states that if Γ is of finite covolume, and if $n \ge 3$, then g is conformal. Ahlfors gave a shortened proof in [3]. Mostow later [9] extended his theorem to the case n=2, with startling alternative conclusions: either g is linear fractional, or it is purely singular. In this context, Kuusalo [6] obtained two similar results under weaker hypotheses, though by "singular" he did not mean quite as strongly singular as Mostow. For example, he proved that if U^2/Γ is of class O_{HB} (no bounded nonconstant harmonic functions), then g is absolutely continuous or singular, and if U^2/Γ is of class O_G (no Green's function), then g is linear fractional or singular.

In another direction, three alternative limit sets for the group Γ have been considered, which I will refer to as the topological, horocyclic, and conical limit sets, and denote respectively by Λ_T , Λ_H , Λ_C . Because Γ acts discontinuously in \mathbf{U}^n , these sets all lie in $\mathbf{\bar{R}}^{n-1} = \partial \mathbf{U}^n$, and we have the inclusions $\Lambda_T \supseteq \Lambda_H \supseteq \Lambda_C$. The condition that $\mathbf{\bar{R}}^{n-1} \setminus \Lambda_H$ have measure zero corresponds to the class O_{HB} , and the condition that $\mathbf{\bar{R}}^{n-1} \setminus \Lambda_C$ have measure zero corresponds to the class O_G . Groups with the latter property are precisely the same as groups of "divergence type", where this term traditionally refers to groups for which a certain series (3.6) diverges. The present paper has as its main objective, to show that Mostow's rigidity theorem applies to such groups.