On the local solvability and the local integrability of systems of vector fields

by

FRANÇOIS TREVES(1)

Rutgers University, New Brunswick, N.J., U.S.A.

Contents

	Introduction	1
1.	Basic concepts and notation	3
2.	Condition (P) and statement of the theorems	6
3.	About Condition (P)	8
4.	Proof of Theorem 2.1	13
5.	Geometric preliminaries to the proof of Theorem 2.2	21
6.	Proof of Theorem 2.2: Construction of L^1 solutions	25
7.	End of proof of Theorem 2.2: Construction of C^{∞} solutions	35
	References	38
	Appendix	39

Introduction

The local solvability of a first-order linear partial differential equation depends on whether it satisfies the so-called Condition (P) (see [4]). Suppose that the differential operator under study is a complex vector field L, nowhere zero, in some open subset of \mathbf{R}^{n+1} . If L is locally integrable, that is to say, if in the vicinity of every point the homogeneous equation Lh=0 has n independent, and smooth, solutions, one can use them to formulate (P) (see [5]). In the case n=1, i.e., when L is defined in an open subset Ω of the plane, there is essentially only one such solution (if one exists at all), in the sense that the differential of any other one is collinear to its differential. Call Z such a solution, and view it as a map $\Omega \rightarrow C$. Condition (P) is equivalent to the property that, locally speaking, the pre-images of points under the mapping Z are connected.

But it must be emphasized that the local integrability of L is by no means automatic. In his "Lectures on linear partial differential equations" (Reg. Conf. Series in Math., No 17 Amer. Math. Soc. 1973). L. Nirenberg has given the example of a

^{(&}lt;sup>1</sup>) During this work the author was partly supported by NSF grant no. 7903545.

¹⁻⁸³⁸²⁸⁵ Acta Mathematica 151. Imprimé le 25 octobre 1983