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I n t r o d u c t i o n  

The local solvability of a first-order linear partial differential equation depends on 

whether it satisfies the so-called Condition (P) (see [4]). Suppose that the differential 

operator under study is a complex vector field L, nowhere zero, in some open subset of  

R "+1. If  L is locally integrable, that is to say, if in the vicinity of every point the 

homogeneous equation Lh--O has n independent, and smooth, solutions, one can use 

them to formulate (P) (see [5]). In the case n = l ,  i.e., when L is defined in an open 

subset Q of  the plane, there is essentially only one such solution (if one exists at all), in 

the sense that the differential of  any other one is collinear to its differential. Call Z such 

a solution, and view it as a map f2---~C. Condition (P) is equivalent to the property that, 

locally speaking, the pre-images of  points under the mapping Z are connected.  

But it must be emphasized that the local integrability of  L is by no means 

automatic. In his "Lec tures  on linear partial differential equat ions"  (Reg. Conf. Series 

in Math., No 17 Amer.  Math. Soc. 1973). L. Nirenberg has given the example of  a 
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