L^{∞} estimates for the $\bar{\partial}$ problem in a half-plane

by

PETER W. JONES(1)

University of Chicago, IL, U.S.A.

§1. Introduction

Suppose μ is a σ -finite complex-valued measure on the upper half-plane $R_+^2 = \{z = x + iy : y > 0\}$. Then μ is called a Carleson measure if

$$\sup_{I} \frac{1}{|I|} |\mu| (I \times (0, |I|]) = ||\mu||_{C} < \infty,$$

where the above supremum is taken over all intervals $I \subset \mathbb{R}$, and where $|\cdot|$ denotes onedimensional Lebesgue measure. Invoking a fundamental theorem due to Carleson [6], Hörmander [21] showed that the $\bar{\partial}$ problem $\bar{\partial}F = \mu$ has a solution F satisfying

$$\left\|F\right\|_{L^{\infty}(\mathbf{R})} \leq C_{0}\left\|\mu\right\|_{C}$$

where μ is a Carleson measure. (Here and throughout the paper we denote by C_0 various universal constants.) The proof of this was based on the duality between H^1 and L^{∞}/H^{∞} and the fact that

$$\|f^*\|_{L^p} \leq C_0 \|f\|_{H^p}$$

where

$$f^{*}(t) = \sup_{|x-t| < y} |f(x+iy)|.$$

Here H^p , $0 , denotes the classical (holomorphic) Hardy space of functions holomorphic on <math>\mathbb{R}^2_+$ and satisfying

$$\sup_{y>0} \left(\int_{-\infty}^{\infty} |f(x+iy)|^p \, dx \right)^{1/p} = \|f\|_{H^p} < \infty \, .$$

^{(&}lt;sup>1</sup>) N.S.F. Grant MCS-8102631.

¹⁰⁻⁸³⁸²⁸² Acta Mathematica 150. Imprimé le 30 Juin 1983