On the complexity of the classification problem for torsion-free abelian groups of rank two

by

SIMON THOMAS

Rutgers University Piscataway, NJ, U.S.A.

1. Introduction

This paper is a contribution to the project [9], [8], [1], [13] of explaining why no satisfactory system of complete invariants has yet been found for the torsion-free abelian groups of finite rank $n \ge 2$. Recall that, up to isomorphism, the torsion-free abelian groups of rank n are exactly the additive subgroups of the n-dimensional vector space \mathbf{Q}^n which contain n linearly independent elements. Thus the collection of torsion-free abelian groups of rank $1 \le r \le n$ can be naturally identified with the set $S(\mathbf{Q}^n)$ of all non-trivial additive subgroups of \mathbf{Q}^n . In 1937, Baer [3] solved the classification problem for the class $S(\mathbf{Q})$ of rank-one groups as follows.

Let **P** be the set of primes. If G is a torsion-free abelian group and $0 \neq x \in G$, then the *p*-height of x is defined to be

 $h_x(p) = \sup\{n \in \mathbb{N} \mid \text{there exists } y \in G \text{ such that } p^n y = x\} \in \mathbb{N} \cup \{\infty\};$

and the *characteristic* $\chi(x)$ of x is defined to be the function

$$|h_x(p)| p \in \mathbf{P} \rangle \in (\mathbf{N} \cup \{\infty\})^{\mathbf{P}}.$$

Two functions $\chi_1, \chi_2 \in (\mathbf{N} \cup \{\infty\})^{\mathbf{P}}$ are said to be *similar* or to belong to the same type, written $\chi_1 \equiv \chi_2$, if and only if

(a) $\chi_1(p) = \chi_2(p)$ for almost all primes p; and

(b) if $\chi_1(p) \neq \chi_2(p)$, then both $\chi_1(p)$ and $\chi_2(p)$ are finite.

Clearly \equiv is an equivalence relation on $(\mathbf{N} \cup \{\infty\})^{\mathbf{P}}$. If G is a torsion-free abelian group and $0 \neq x \in G$, then the *type* $\tau(x)$ of x is defined to be the \equiv -equivalence class containing the characteristic $\chi(x)$.

Research partially supported by NSF Grants.