A characterization of product $B M O$ by commutators

by
SARAH H. FERGUSON
and
MICHAEL T. LACEY
Wayne State University
Georgia Institute of Technology Atlanta, GA, U.S.A. Detroit, MI, U.S.A.

1. Introduction

In this paper we establish a commutator estimate which allows one to concretely identify the product $B M O$ space, $B M O\left(\mathbf{R}_{+}^{2} \times \mathbf{R}_{+}^{2}\right)$, of A. Chang and R. Fefferman, as an operator space on $L^{2}\left(\mathbf{R}^{2}\right)$. The one-parameter analogue of this result is a well-known theorem of Nehari [8]. The novelty of this paper is that we discuss a situation governed by a twoparameter family of dilations, and so the spaces H^{1} and $B M O$ have a more complicated structure.

Here \mathbf{R}_{+}^{2} denotes the upper half-plane and $B M O\left(\mathbf{R}_{+}^{2} \times \mathbf{R}_{+}^{2}\right)$ is defined to be the dual of the real-variable Hardy space H^{1} on the product domain $\mathbf{R}_{+}^{2} \times \mathbf{R}_{+}^{2}$. There are several equivalent ways to define this latter space, and the reader is referred to [5] for the various characterizations. We will be more interested in the biholomorphic analogue of H^{1}, which can be defined in terms of the boundary values of biholomorphic functions on $\mathbf{R}_{+}^{2} \times \mathbf{R}_{+}^{2}$ and will be denoted throughout by $H^{1}\left(\mathbf{R}_{+}^{2} \times \mathbf{R}_{+}^{2}\right)$, cf. [10].

In one variable, the space $L^{2}(\mathbf{R})$ decomposes as the direct sum $H^{2}(\mathbf{R}) \oplus \overline{H^{2}(\mathbf{R})}$, where $H^{2}(\mathbf{R})$ is defined as the boundary values of functions in $H^{2}\left(\mathbf{R}_{+}^{2}\right)$ and $\overline{H^{2}(\mathbf{R})}$ denotes the space of complex conjugate of functions in $H^{2}(\mathbf{R})$. The space $L^{2}\left(\mathbf{R}^{2}\right)$, therefore, decomposes as the direct sum of the four spaces $H^{2}(\mathbf{R}) \otimes H^{2}(\mathbf{R}), \overline{H^{2}(\mathbf{R})} \otimes H^{2}(\mathbf{R})$, $H^{2}(\mathbf{R}) \otimes \overline{H^{2}(\mathbf{R})}$ and $\overline{H^{2}(\mathbf{R})} \otimes \overline{H^{2}(\mathbf{R})}$, where the tensor products are the Hilbert space tensor products. Let $P_{ \pm, \pm}$denote the orthogonal projection of $L^{2}\left(\mathbf{R}^{2}\right)$ onto the holo-morphic/anti-holomorphic subspaces, in the first and second variables, respectively, and let H_{j} denote the one-dimensional Hilbert transform in the j th variable, $j=1,2$. In terms of the projections $P_{ \pm, \pm}$,

$$
H_{1}=P_{+,+}+P_{+,-}-P_{-,+}-P_{-,-} \quad \text { and } \quad H_{2}=P_{+,+}+P_{-,+}-P_{+,-}-P_{-,-}
$$

[^0]
[^0]: The first author was supported by NSF Grant DMS-0071514, while the second author was supported by NSF Grant DMS-9706884.

