Acta Math., 189 (2002), 143–160 © 2002 by Institut Mittag-Leffler. All rights reserved

A characterization of product BMO by commutators

by

and

SARAH H. FERGUSON

Wayne State University Detroit, MI, U.S.A. Georgia Institute of Technology Atlanta, GA, U.S.A.

MICHAEL T. LACEY

1. Introduction

In this paper we establish a commutator estimate which allows one to concretely identify the product BMO space, $BMO(\mathbf{R}^2_+ \times \mathbf{R}^2_+)$, of A. Chang and R. Fefferman, as an operator space on $L^2(\mathbf{R}^2)$. The one-parameter analogue of this result is a well-known theorem of Nehari [8]. The novelty of this paper is that we discuss a situation governed by a twoparameter family of dilations, and so the spaces H^1 and BMO have a more complicated structure.

Here \mathbf{R}^2_+ denotes the upper half-plane and $BMO(\mathbf{R}^2_+ \times \mathbf{R}^2_+)$ is defined to be the dual of the real-variable Hardy space H^1 on the product domain $\mathbf{R}^2_+ \times \mathbf{R}^2_+$. There are several equivalent ways to define this latter space, and the reader is referred to [5] for the various characterizations. We will be more interested in the biholomorphic analogue of H^1 , which can be defined in terms of the boundary values of biholomorphic functions on $\mathbf{R}^2_+ \times \mathbf{R}^2_+$ and will be denoted throughout by $H^1(\mathbf{R}^2_+ \times \mathbf{R}^2_+)$, cf. [10].

In one variable, the space $L^2(\mathbf{R})$ decomposes as the direct sum $H^2(\mathbf{R}) \oplus \overline{H^2(\mathbf{R})}$, where $H^2(\mathbf{R})$ is defined as the boundary values of functions in $H^2(\mathbf{R}_+^2)$ and $\overline{H^2(\mathbf{R})}$, denotes the space of complex conjugate of functions in $H^2(\mathbf{R})$. The space $L^2(\mathbf{R}^2)$, therefore, decomposes as the direct sum of the four spaces $H^2(\mathbf{R}) \otimes H^2(\mathbf{R})$, $\overline{H^2(\mathbf{R})} \otimes H^2(\mathbf{R})$, $H^2(\mathbf{R}) \otimes \overline{H^2(\mathbf{R})}$ and $\overline{H^2(\mathbf{R})} \otimes \overline{H^2(\mathbf{R})}$, where the tensor products are the Hilbert space tensor products. Let $P_{\pm,\pm}$ denote the orthogonal projection of $L^2(\mathbf{R}^2)$ onto the holomorphic/anti-holomorphic subspaces, in the first and second variables, respectively, and let H_j denote the one-dimensional Hilbert transform in the *j*th variable, *j*=1,2. In terms of the projections $P_{\pm,\pm}$,

 $H_1 = P_{+,+} + P_{+,-} - P_{-,+} - P_{-,-} \quad \text{and} \quad H_2 = P_{+,+} + P_{-,+} - P_{+,-} - P_{-,-}.$

The first author was supported by NSF Grant DMS-0071514, while the second author was supported by NSF Grant DMS-9706884.