A new iterative method in Waring's problem

by

R. C. VAUGHAN

Imperial College London, England, U.K.

Contents

1.	Introduction	1
2.	The reduction of the auxiliary equation	8
		19
		40
5.	The estimation of $G(k)$ when $4 \le k \le 8$	47
		57
		57
		59
		62
		65
	References	70

1. Introduction

As is usual in Waring's problem we take G(k) to be the smallest number s such that every sufficiently large natural number is the sum of at most s kth powers of natural numbers.

In this memoir we introduce a new iterative process to Waring's problem. We are thereby able to improve all previous upper bounds for G(k) when $k \ge 5$.

Hitherto the best upper bounds for G(k) for smaller $k \ge 4$ have been obtained by variants of the iterative method of Davenport (see [D3], [T3], [Va4] and [Va5]).

When $5 \le k \le 8$ we obtain

THEOREM 1.1. We have $G(5) \le 19$, $G(6) \le 29$, $G(7) \le 41$, $G(8) \le 58$.

This may be compared with the respective bounds 21, 31, 45, and 62 contained in [Va4] and [Va5].