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1. Introduction

As is usual in Waring’s problem we take G(k) to be the smallest number s such that
every sufficiently large natural number is the sum of at most s kth powers of natural
numbers.

In this memoir we introduce a new iterative process to Waring’s problem. We are
thereby able to improve all previous upper bounds for G(k) when k=5.

Hitherto the best upper bounds for G(k) for smaller k=4 have been obtained by
variants of the iterative method of Davenport (see [D3], [T3], [Va4] and [Va$]).

When 5<k<8 we obtain

THEOREM 1.1. We have G(5)<19, G(6)<29, G(7)=41, G(8)<58.

This may be compared with the respective bounds 21, 31, 45, and 62 contained in
[Vad] and [VaS].
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