Integers, without large prime factors, in arithmetic progressions, I

by
ANDREW GRANVILLE ${ }^{1}$)
Institute for Advanced Study
Princeton, NJ, U.S.A.

1. Introduction

Let $\Psi(x, y)$ be the number of integers $\leqslant x$ that are free of prime factors $>y, \Psi_{q}(x, y)$ be the number of such integers that are also coprime to q, and $\Psi(x, y ; a, q)$ be the number of such integers in the congruence class $a(\bmod q)$. Good estimates for these functions have many applications in number theory (for instance, to bounds for the least quadratic nonresidue $(\bmod p)[\mathrm{Bg}]$, to Waring's problem [Va], to finding large gaps between primes [Ra] and to analysis of factoring algorithms [Po$]$), as well as being interesting in of themselves, and so have been extensively investigated.

Recently Hildebrand and Tenenbaum [HT] have provided a good estimate for $\Psi(x, y)$ for all $x \geqslant y \geqslant 2$, and a similar method works for $\Psi_{q}(x, y)$; however their method applies to $\Psi(x, y ; a, q)$ only when q is considerably smaller than y. In general one expects that, for sufficiently large x,

$$
\begin{equation*}
\Psi(x, y ; a, q) \sim \frac{\Psi_{q}(x, y)}{\phi(q)} \tag{1.1}
\end{equation*}
$$

whenever a is coprime to q, provided that the primes $\leqslant y$ generate the full multiplicative group of units $(\bmod q)$. Buchstab $[\mathrm{Bu}]$ proved such a result when q and $u(:=\log x / \log y)$ are fixed; and extensions of this, for q up to a fixed power of $\log y$, are considered in [LF] and [No]. Recently Fourry and Tenenbaum [FT] have shown that the estimate

$$
\begin{equation*}
\Psi(x, y ; a, q)=\frac{\Psi_{q}(x, y)}{\phi(q)}\{1+O(\exp (-c \sqrt{\log y}))\} \tag{1.2}
\end{equation*}
$$

holds uniformly for

$$
\begin{equation*}
y \geqslant 2, \quad x \geqslant y \geqslant \exp \left(c(\log \log x)^{2}\right) \tag{1.3}
\end{equation*}
$$

[^0]
[^0]: ${ }^{(1)}$) The author is supported, in part, by the National Science Foundation (grant number DMS8610730)

