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1. I n t r o d u c t i o n  

This  pape r  develops  the  founda t ions  of the  t heo ry  of quas iconformal  maps  in met r i c  

spaces  t h a t  sa t i s fy  ce r ta in  bounds  on the i r  mass  and  geometry .  T h e  pr inc ipa l  message  is 

t h a t  such a t heo ry  is b o t h  re levant  and  viable.  

The  first ma in  issue is the  p rob l e m of defini t ion,  which we next  descr ibe.  Quasi-  

conformal  m a p s  are  commonly  u n d e r s t o o d  as h o m e o m o r p h i s m s  t h a t  d i s to r t  the  shape  

of inf in i tes imal  bal ls  by  a un i fo rmly  b o u n d e d  amount .  Th is  r equ i rement  makes  sense 

in every met r ic  space.  Given  a h o m e o m o r p h i s m  f f rom a met r i c  space  X to  a met r i c  

space Y,  then  for x c X  and  r > 0  set 

Hi (x ,  r ) =  s u p { J f ( x ) -  f(Y)l  : Ix -y[  ~ r} (I . I)  

Here and  hereaf te r  we use the  d i s t ance  n o t a t i o n  I x - y l  in any  met r i c  space.  
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