An example of a weakly hyperbolic Cauchy problem not well posed in C^{∞}

by

FERRUCCIO COLOMBINI and SERGIO SPAGNOLO

University of Trieste Trieste, Italy University of Pisa Pisa, Italy

§ 1. Introduction

In this paper we deal with the Cauchy problem

$$u_{\mu} - a(t) u_{xx} = 0, \quad u(x, 0) = \varphi(x), \quad u_{\mu}(x, 0) = \psi(x), \tag{1}$$

where $0 \le t \le T, x \in \mathbb{R}$ and a(t) is a C^{∞} function on the interval [0, T] satisfying the assumption

$$a(t) \ge 0. \tag{2}$$

Our purpose is to show that (1) may be not well posed in the class $\mathscr{C}(\mathbf{R}_x)$ of the C^{∞} functions, contrary to what occurs when $a(t) \ge \lambda > 0$.

More precisely, we shall construct a C^{∞} function a(t), strictly positive on $[0, \varrho]$ and identically null on $[\varrho, +\infty]$ where ϱ is a given positive number, and two C^{∞} functions $\varphi(x)$ and $\psi(x)$ in such a way that (1) has no solution in the class of distributions on $\mathbf{R}_x \times [0, T]$ as $T > \varrho$.

By virtue of the strict positivity of the coefficient a(t) for $t < \varrho$, this problem has a C^{∞} solution on $[0, \varrho[\times \mathbf{R}_x]$, which is the *unique* solution in the class $C^1([0, \varrho[, \mathcal{D}'(\mathbf{R}_x)]))$. However, this solution cannot be continued as distribution on any strip $]0, \varrho + \varepsilon[\times \mathbf{R}_x]$, $\forall \varepsilon > 0$. In particular it does not belong to $C([0, \varrho], \mathcal{D}'(\mathbf{R}_x))$.

Let us recall that problem (1) is said to be *well posed* in some class $\mathcal{F}(\mathbf{R}_x)$ of *real* functions or distributions (or analytic functionals) if, for any φ and ψ in $\mathcal{F}(\mathbf{R}_x)$, it admits a unique solution u in $C^1([0, T], \mathcal{F}(\mathbf{R}_x))$ and the mapping $(\varphi, \psi) \mapsto u$ is continuous.

The equation $u_{tr}-a(t)u_{xx}=0$ is called *hyperbolic* (see Mizohata, [2]) when the corresponding Cauchy problem is well posed in $\mathscr{C}(\mathbf{R}_x)$.