Perturbation theory for infinite-dimensional integrable systems on the line. A case study.

by

PERCY DEIFT

and

XIN ZHOU

Courant Institute New York, NY, U.S.A. Duke University
Durham, NC, U.S.A.

In memory of Jürgen Moser

Contents

1.	Introduction	163
2.	Preliminaries	175
3.	Proofs of the main theorems	187
4.	Smoothing estimates	194
5.	Supplementary estimates	217
6.	A priori estimates	241
$R\epsilon$	eferences	260

1. Introduction

In this paper we consider perturbations

$$\begin{split} iq_t + q_{xx} - 2|q|^2 q - \varepsilon |q|^l q &= 0, \\ q(x, t = 0) &= q_0(x) \to 0 \quad \text{as } |x| \to \infty \end{split} \tag{1.1}$$

of the defocusing nonlinear Schrödinger (NLS) equation

$$iq_t + q_{xx} - 2|q|^2 q = 0,$$

 $q(x, t = 0) = q_0(x) \to 0 \quad \text{as } |x| \to \infty.$ (1.2)

Here $\varepsilon > 0$ and l > 2. The particular form of the perturbation $\varepsilon |q|^l q$ in (1.1) is not special, and it will be clear to the reader that the analysis goes through for any perturbation of the form $\varepsilon \Lambda'(|q|^2) q$, as long as $\Lambda: \mathbf{R}_+ \to \mathbf{R}_+$ is sufficiently smooth, $\Lambda'(s) \geqslant 0$ and $\Lambda(s)$

A more detailed, extended version of this paper is posted on http://www.ml.kva.se/publications/acta/webarticles/deift. Throughout this paper we refer to the web version as [DZW].