THE MINIMUM OF A FACTORIZABLE BILINEAR FORM.

$B y$
E. S. BARNES
Trinity College, Cambridae.

I. Let

$$
\begin{equation*}
B(x, y, z, t)=(\alpha x+\beta y)(\gamma z+\delta t) \tag{I.I}
\end{equation*}
$$

be a factorizable bilinear form, where $\alpha, \beta, \gamma, \delta$ are real, and x, y, z, t take all integral values subject to

$$
\begin{equation*}
x t-y z= \pm \mathrm{I} \tag{1.2}
\end{equation*}
$$

We suppose that $A=\alpha \delta-\beta \gamma \neq 0$, and that B does not represent zero. Denoting the lower bound of $|B(x, y, z, t)|$ by $M(B)$, we have the following theorem, which is due to Davenport and Heilbronn ${ }^{1}$:

Theorem.
(i)

$$
\begin{equation*}
M(B) \leq \frac{3-\sqrt{5}}{2 \sqrt{5}}|\Delta| \tag{1.3}
\end{equation*}
$$

and equality occurs if and only if B is equivalent to a multiple of

$$
\begin{equation*}
B_{1}=\left(x+\frac{\mathrm{I}+\sqrt{5}}{2} y\right)\left(z+\frac{\mathrm{I}-\sqrt{5}}{2} t\right) \tag{1.4}
\end{equation*}
$$

in which case the lower bound is attained.
(ii) For all forms not equivalent to a multiple of B,

$$
\begin{equation*}
M(B) \leq \frac{2-\sqrt{2}}{4}|A| \tag{1.5}
\end{equation*}
$$

and equality occurs if and only if B is equivalent to a multiple of

[^0]
[^0]: ${ }^{2}$ Quarterly Journal 18 (1947), 107-123.

