THE CLOSEST PACKING OF CONVEX TWO-DIMENSIONAL DOMAINS.

By

C. A. ROGERS

of London.

1. The following theorem is among the results proved by L. Fejes Tóth ${ }^{1}$ in a recent paper.

Theorem. Let K_{1}, \ldots, K_{n} be n convex domains, which lie without mutual overlapping in a hexagon ${ }^{2} H$ of area $a(H)$, and each of which arises from a giren convex domain K by an area-preserving affine transformation. Then

$$
\begin{equation*}
n h(K) \leq a(H) \tag{I}
\end{equation*}
$$

where $h(K)$ denotes the area of the smallest hexagon circumscribed about K.
Some time ago I obtained a similar result on the restrictive hypothesis that the domains K_{1}, \ldots, K_{n} are all congruent and similarly situated. ${ }^{3}$ Although my results are largely superseded by those of Fejes Tóth, they are slightly stronger than his when the above condition is satisfied (especially when the domains do not have a centre of symmetry), and are obtained by a very different method. So I hope that the following statements of the results together with indications of the methods of proof may have some interest.
2. Let $\boldsymbol{a}, \boldsymbol{b}, \ldots, \boldsymbol{z}$ denote the points in two-dimensional space with coordinates $\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right), \ldots,\left(z_{1}, z_{2}\right) ; \mathbf{0}$ being the origin with coordinates (0,0). Let

[^0]
[^0]: ${ }^{1}$ Acta Sci. Math. (Szeged), 12 (1950), 62-67, see Theorem I and the remarks on page 66.
 ${ }^{2}$ A convex polygon having at most six sides will be called a hexagon.
 ${ }^{3}$ My first result, Theorem 2, was obtained in 1947, and was described in seminars in London, Cambridge, Bristol and Princeton in the years 1948-49; its most important consequence was announced in a paper by J. H. H. Chalk and myself (J. L. M. S., 23 (1948), 178 -187 (179)). Detailed proofs of the results were given in the version of the present paper originally submitted to Acta mathematica.

