THE PROBLEM OF UNITARY EQUIVALENCE. ${ }^{1}$

By
J. BRENNER
of Pullman, Wash. (U.S. A.).

The question of equivalence of matrices under the group G of unitary transformations has received attention from several writers [1, 2, 3, 4]. Fundamental in most investigations is the theorem of Schur [5] that any matrix A of complex numbers can be transformed by some unitary matrix into triangle form: $\left(a_{i j}\right), a_{i j}=0$ whenever $i>j$. A short proof of Schur's theorem appears in Murnaghan's book [6].

This theorem alone is not enough to settle the equivalence question; two matrices may be in triangle form, equivalent under G, and yet not equal. An example is given by the matrices $\left(\begin{array}{ll}0 & i \\ 0 & 0\end{array}\right)$ and $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$.

If a matrix is in triangle form, the diagonal elements are the characteristic roots. Schur proves further that it is possible to find a unitary matrix U such that $U A U^{*}$ is in triangle form and has its characteristic roots arranged in any order along the main diagonal. In order that two matrices be equivalent under G it is clearly necessary that they have the same characteristic roots; this condition is by no means sufficient.

This article investigates the question of equivalence under G :

$$
A_{1}, B_{1} \text { given; } X \text { to be found so that }
$$

$$
\begin{equation*}
X A_{1} X^{*}=B_{1}, \quad X X^{*}=1 \tag{I}
\end{equation*}
$$

To solve problem (i), we follow a standard procedure: A_{1} is transformed into a unique canonical form C_{1}. This canonical form will have the properties ordinarily ascribed to canonical forms. The definition of canonical form will be determinative; the canonical form will be unique; and the definition will be so arranged that two matrices equivalent under G have the same canonical form.

[^0]
[^0]: ${ }^{1}$ The solution herewith presented was completed in 1948 ,-but not published until now.

