Acta Math., 177 (1996), 163–224 © 1996 by Institut Mittag-Leffler. All rights reserved

Local connectivity of some Julia sets containing a circle with an irrational rotation

by

CARSTEN LUNDE PETERSEN

Roskilde University Roskilde, Denmark

The Fatou set F_R for a rational map $R: \overline{\mathbf{C}} \to \overline{\mathbf{C}}$ is the set of points $z \in \overline{\mathbf{C}}$ possessing a neighbourhood on which the family of iterates $\{R^n\}_{n \ge 0}$ is normal (in the sense of Montel). The Julia set $J_R = \overline{\mathbf{C}} - F_R$ is the complement of the Fatou set. (The monographs [CG], [Be], [St] provide introductions to the theory of iteration of rational maps.)

Let $\theta \in [0, 1] - \mathbf{Q}$ be an irrational number and write it as a continued fraction

$$\theta = \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \frac{1}{a_4 + \frac{1}{\ddots}}}}}$$

where $a_n \in \mathbb{N}$ for each $n \ge 1$. The number θ is termed of constant type, or equivalently, is termed Diophantine of exponent 2, if the sequence $\{a_n\}_{n \in \mathbb{N}}$ is bounded.

For $\theta \in [0,1]$ define $\lambda_{\theta} = \exp(i2\pi\theta)$ and $P_{\theta}(z) := \lambda_{\theta} z + z^2$. Moreover, let $J_{P_{\theta}}$ denote the Julia set of P_{θ} . The polynomial P_{θ} has a Siegel disc around the (indifferent) fixed point 0, if and only if it is locally linearizable. That is, if there exists a local change of coordinates $\phi: (\mathbf{C}, 0) \to (\mathbf{C}, 0)$ with $\phi \circ P_{\theta} = \lambda_{\theta} \cdot \phi$. It is well known that P_{θ} has a Siegel disc around 0 for every θ of constant type (see e.g. [Si]).

THEOREM A. For every θ of constant type the Julia set $J_{P_{\theta}}$ is locally connected and has zero Lebesgue measure.

The proof uses in an essential way a model J_{θ} of $J_{P_{\theta}}$. The model J_{θ} was constructed in 1986 and proved to be quasi-conformally equivalent to $J_{P_{\theta}}$ in 1987 (see [Do] for the