Fundamental solutions of real homogeneous cubic operators of principal type in three dimensions

by

PETER WAGNER
Universität Innsbruck
Innsbruck, Austria

1. Introduction

1.1. The operator $\partial_{1}^{3}+\partial_{2}^{3}+\partial_{3}^{3}$ was considered - to my knowledge-for the first time in 1913 in N. Zeilon's article [20], wherein he generalizes I. Fredholm's method of construction of fundamental solutions (see [5]) from homogeneous elliptic equations to arbitrary homogeneous equations in three variables with a real-valued symbol (cf. [20, II, pp. 14-22], [6, Chapter 11, pp. 146-148]). An explicit formula for a fundamental solution was given in [19]. The objective of this paper is to generalize the calculations in [19] to the operators $\partial_{1}^{3}+\partial_{2}^{3}+\partial_{3}^{3}+3 a \partial_{1} \partial_{2} \partial_{3}, a \in \mathbf{R} \backslash\{-1\}$. As discussed below, this class of operators comprises all real homogeneous cubic operators of principal type in three dimensions.

According to Newton's classification of real elliptic curves, the non-singular real homogeneous polynomials $P(\xi)$ of third order in three variables are divided into two types according to whether the real projective curve $\left\{[\xi] \in \mathbf{P}\left(\mathbf{R}^{3}\right): P(\xi)=0\right\}$ consists of one or of two connected components, respectively. (For $\xi \in \mathbf{R}^{n} \backslash\{0\},[\xi] \in \mathbf{P}\left(\mathbf{R}^{n}\right)$ denotes the corresponding projective point, i.e., the line $\{t \xi: t \in \mathbf{R}\}$.) In Hesse's normal form, all non-singular real cubic curves are-up to linear transformations-given by

$$
P_{a}(\xi)=\xi_{1}^{3}+\xi_{2}^{3}+\xi_{3}^{3}+3 a \xi_{1} \xi_{2} \xi_{3}, \quad a \in \mathbf{R} \backslash\{-1\}
$$

(cf. [3, 7.3, Satz 4, p. 379; English transl., p. 293], [4, §7, (10), p. 39], [17, §1.4, p. 19]). Let $X_{a}:=\left\{[\xi] \in \mathbf{P}\left(\mathbf{R}^{3}\right): P_{a}(\xi)=0\right\}$ denote the real projective variety defined by P_{a}. For $a>-1$, X_{a} is connected, whereas, for $a<-1, X_{a}$ consists of two components (cf. Figure 1). The corresponding operators $P_{a}(\partial)$ also differ from the physical viewpoint: For $a<-1$, every projective line through $[1,1,1]$ intersects X_{a} in three different projective points, and thus P_{a} is strongly hyperbolic in the direction $(1,1,1)\left(\left[1,3.8\right.\right.$, p. 129]); for $a>-1, P_{a}$ is not hyperbolic in any direction, nor is it an evolution operator (cf. [15, Example 1, p. 463] for the case of $a=0$).

