Correction to

On the Diophantine equation $1^{k}+2^{k}+\ldots+x^{k}+R(x)=y^{2}$

by
M. VOORHOEVE,
K. GYÖRY
and
R. TIJDEMAN
Technische Universiteit
University of Debrecen
Rijksuniversiteit Leiden Eindhoven, Netherlands
Debrecen, Hungary
Leiden, Netherlands

(Acta Mathematica, 143 (1979), 1-8)

In the above article the authors claim that a polynomial P with rational integer coefficients which is congruent $(\bmod 4)$ to

$$
3 x^{8}+2 x^{6}+x^{4}+2 x^{2}
$$

has at least three simple roots. Their argumentation is incorrect. In this corrigendum, they wish to repair this defect by proving claim (i) in case B of Lemma 4 in a correct way.

Suppose P can be written as

$$
\begin{equation*}
P(x) \equiv Q(x) T^{2}(x) \tag{*}
\end{equation*}
$$

with $\operatorname{deg} Q \leqslant 2$.
If $\operatorname{deg} Q=0$, then clearly Q is an odd constant, so $T^{2}(x) \equiv x^{8}+x^{4}(\bmod 2)$, hence $T(x) \equiv x^{4}+x^{2}(\bmod 2)$ and $T^{2}(x) \equiv x^{8}+2 x^{6}+x^{4}(\bmod 4)$, which is clearly not the case. If $\operatorname{deg} Q=1$, then either $Q(x) \equiv x$ or $Q(x) \equiv x+1(\bmod 2)$. In both cases, the quotient of P and Q cannot be written as a square $(\bmod 2)$. If $\operatorname{deg} Q=2$, then either

$$
\mathrm{Q}(x) \equiv x^{2} \quad \text { or } \quad Q(x) \equiv x^{2}+x \quad \text { or } \quad Q(x) \equiv x^{2}+1 \quad(\bmod 2)
$$

since $x^{2}+x+1$ does not divide $P(\bmod 2)$. In the first case $T(x) \equiv x^{3}+x(\bmod 2)$, hence $T^{2}(x) \equiv x^{6}+2 x^{4}+x^{2}(\bmod 4)$ which does not divide $P(\bmod 4)$. In the second case, the

