HP^{2} -bundles and elliptic homology

by

and

Max-Planck-Institut für Mathematik Bonn, Germany

MATTHIAS KRECK

STEPHAN STOLZ(¹)

University of Notre Dame Notre Dame, IN, U.S.A.

1. Introduction

The (universal) elliptic genus [L1] is a ring homomorphism

$$\phi: \Omega^{\rm SO}_* \longrightarrow M_* = \mathbf{Z} \begin{bmatrix} \frac{1}{2} \end{bmatrix} [\delta, \varepsilon]$$

from the oriented bordism ring to the graded polynomial ring M_* . Here $\delta = \phi(\mathbf{CP}^2)$ and $\varepsilon = \phi(\mathbf{HP}^2)$, where \mathbf{CP}^2 (resp. \mathbf{HP}^2) is the complex (resp. quaternionic) projective plane (an introduction and background information on elliptic genera can be found in [HBJ], [L1], [O2], [Se], [W]). The elliptic genus provides a connection between bordism theory, modular forms and quantum field theory. For, M_* can be identified with a ring of modular forms and, following Witten [W], the elliptic genus $\phi(M)$ of a spin manifold M can be interpreted as the S^1 -equivariant index of an operator on the loop space on M. In fact, Witten used this interpretation to provide a heuristic proof for the rigidity of the elliptic genus. A rigorous proof along those lines was given by Taubes [T] (see also [BT]). The rigidity is equivalent to the multiplicativity of ϕ for certain fibre bundles $E \rightarrow B$ [O3]; namely, if E, B are closed oriented manifolds, the fibre F is a spin manifold and the structure group of the bundle is compact and connected then $\phi(E) = \phi(F)\phi(B)$.

The universal elliptic genus makes M_* and hence $M_*[\omega^{-1}]$ for any $\omega \in M_*$ a left module over Ω^{SO}_* (recall that $M_*[\omega^{-1}] = \varinjlim M_*$, where the connecting maps in the sequence are given by multiplication by ω). Landweber, Ravenel and Stong [LRS], [L1] showed that the functor

$$X \mapsto \Omega^{\rm SO}_*(X) \otimes_{\Omega^{\rm SO}_*} M_*[\omega^{-1}] \tag{1.1}$$

is a homology theory if $\omega = \varepsilon$ or $\omega = \delta^2 - \varepsilon$. Recently Franke [Fr] proved this for a general ω of positive degree. This 8-periodic homology theory is called (odd primary) periodic elliptic homology.

 $^(^1)$ The second author was partially supported by NSF Grant DMS 88-02481, the Max-Planck-Institut in Bonn and the SFB in Göttingen.