A converse to the mean value theorem for harmonic functions

by

and

WOLFHARD HANSEN

NIKOLAI NADIRASHVILI Universität Bielefeld

Bielefeld, Germany

Universität Bielefeld Bielefeld, Germany

0. Introduction

Let $U \neq \emptyset$ be a bounded domain in \mathbb{R}^d , $d \ge 1$, and for every $x \in U$ let B^x be an open ball contained in U with center x. If f is a harmonic integrable function on U then

$$f(x) = \frac{1}{\lambda(B^x)} \int_{B^x} f \, d\lambda \quad \text{for every } x \in U \tag{(*)}$$

 $(\lambda$ Lebesgue measure on \mathbb{R}^d). The converse question to what extent this restricted mean value property implies harmonicity has a long history (we are indebted to I. Netuka for valuable hints). Volterra [26] and Kellogg [20] noted first that a continuous function f on the closure \overline{U} of U satisfying (*) is harmonic on U. At least if U is regular there is a very elementary proof for this fact (see Burckel [7]): Let g be the difference between f and the solution of the Dirichlet problem with boundary value f. If $g \neq 0$, say $a = \sup g(U) >$ 0, choose $x \in \{g=a\}$ having minimal distance to the boundary. Then (*) leads to an immediate contradiction. In fact, for continuous functions on \overline{U} the question is settled for arbitrary harmonic spaces and arbitrary representing measures $\mu_x \neq \varepsilon_x$ for harmonic functions.

If f is bounded on U and Borel measurable the answer may be negative unless restrictions on the radius r(x) of the balls B^x are imposed (Veech [23]): Let U=]-1,1[, f(0)=0, f=-1 on]-1,0[, f=1 on $]0,1[, 0\notin B^x$ for $x\neq 0$ (similarly in $\mathbf{R}^d, d\geq 2$)!

There are various positive results, sometimes under restrictions on U, but always under restrictions on the function $x \mapsto r(x)$ (Feller [9], Akcoglu and Sharpe [1], Baxter [2] and [3], Heath [17], Veech [23] and [24]). For example Heath [17] showed for arbitrary Uthat a bounded Lebesgue measurable function on U having the restricted mean value property (*) is harmonic provided that, for some $\varepsilon > 0$, $\varepsilon d(x, \mathbb{C}U) < r(x) < (1-\varepsilon)d(x, \mathbb{C}U)$ holds for every $x \in U$. Veech [23] proved that a Lebesgue measurable function f on U