The density of integer points on homogeneous varieties

by

WOLFGANG M. SCHMIDT(1)

University of Colorado Boulder, CO, U.S.A.

A. The setting

1. Introduction

Let V be a homogeneous algebraic set in \mathbb{C}^s defined over the rationals, i.e. a set

$$V = V(\mathfrak{F}) = V(\mathfrak{F}_1, \ldots, \mathfrak{F}_r),$$

consisting of the common zeros of given forms $\mathfrak{F}_1, ..., \mathfrak{F}_r$ of positive degrees, in s variables, and with rational coefficients. We are interested in

$$z_P(V)=z_P(\mathfrak{F}),$$

the number of integer points $\underline{x} = (x_1, ..., x_s)$ on V with

$$|\underline{x}| := \max(|x_1|, \dots, |x_s|) \leq P.$$

Not much is known in general about the behaviour of $z_P(V)$ as a function of P. In those cases where we do have information and where $z_P(V) \rightarrow \infty$ (i.e. where V contains an integer point besides 0) we have

$$z_P(V) \sim \mu P^{\beta}$$
,

where $\mu>0$, $\beta>0$ and β is an integer.

Birch [1] could show that a system \mathfrak{F} of r forms of odd degrees $\leq k$ in $s > c_1(k, r)$ variables possesses a nontrivial integer zero. In particular, $z_P(\mathfrak{F}) \to \infty$. It would be easy

⁽¹⁾ Partially supported by NSF-MCS-8015356.