ON CERTAIN EXTREMUM PROBLEMS FOR ANALYTIC FUNCTIONS.

By

W. W. ROGOSINSKI and H. S. SHAPIRO¹ of Newcastle upon of Murray Hill Tyne. (N. Y.).

Introduction.

0.1. In order to state, in their simplest form, the type of problems to be discussed, we suppose, first, that

(0.1.1)
$$f(z) = \sum_{0}^{\infty} a_k z^k$$

is regular for $|z| \le 1$; and that $\mathfrak{k}(z)$ is regular for $|z| \le 1$, except for a finite number of poles β_i with $|\beta_i| < 1$. Then

(0.1.2)
$$J(f) = \frac{1}{2\pi i} \int_{|\zeta|=1}^{\infty} f(\zeta) \, \check{t}(\zeta) \, d\zeta$$

is the sum of the residues of f(z) $\mathfrak{k}(z)$ at the points β_i . If, for instance, $\mathfrak{k}(z) = \sum_{0}^{n} c_k z^{-(k+1)}$ then $J(f) = \sum_{0}^{n} c_k a_k$; if $\mathfrak{k}(z) = n! (z - \beta)^{-(n+1)}$, $|\beta| < 1$, then $J(f) = f^{(n)}(\beta)$.

In these and similar cases it is a natural and important problem to determine, for a given 'kernel' f(z), the precise sup |J(f)| when the functions f(z) vary inside a suitably given class: for instance, the class of all f with $|f| \le 1$ in $|z| \le 1$.

0.2. In a previous paper $[M-R]^2$ A. J. Macintyre and one of the present authors studied such extremum problems for the following classes H_p : Let $1 \le p \le \infty$. If $p < \infty$ then H_p denotes the class of all functions f(z) regular in |z| < 1 for which the mean values

¹ Dr. Shapiro's contribution represents work done on a doctorate thesis at M.I.T. under an A.E.C. predoctoral fellowship.

² MACINTYRE and ROGOSINSKI, quoted as [M-R] throughout. Compare the list of references at the end of this paper.