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Some years ago, Gromoll and Meyer [15] proved tha t  if M is a complete noncompact  

Riemannian manifold with everywhere positive sectional curvature, then M is diffeo- 

morphic to Euclidean space and the exponential map expv: T M v ~ M  is for every point 

p EM a proper map.  During our recent work on noncompact  Ki~hler manifolds [9]-[11], 

we realized tha t  these and other results on such Riemannian manifolds would follow quite 

readily from one existence theorem, namely: on a complete noneompact  Riemannian 

manifold of positive curvature there is a C ~~ strictly convex exhaustion function 7, tha t  is, a 

C ~ function ~: M-~ [0, + o~) which is proper and is such tha t  all the eigenvalues of its second 

covariant differential are everywhere positive (Theorem l(a)). The function ~ can in fact be 

chosen to be (uniformly) Lipschitz continuous on all of M. The existence of a continuous 

strictly convex exhaustion function (see w 1 for the definition of strict convexity of con- 

tinuous functions) was deduced in [12] from results in [3]. Therefore the main weight of 

the present existence theorem is the possibility of choosing the function to be C~: in fact, 

the existence theorem as stated is deduced in this paper from a general theorem tha t  con- 

tinuous strictly convex functions can be approximated by  C ~~ strictly convex functions on 

any Riemanuian manifold (Theorem 2). The purpose of this paper is thus to establish the 

existence theorem and to provide a systematic exposition of the consequences which flow 

from it. 

In  the terminology of classical analysis, Theorem 2 is a smoothing theorem for strictly 

convex functions on arbi t rary Riemannian manifolds. I t  should be pointed out tha t  the 

usual procedure of smoothing in euclidean space by  convoluting with a spherically sym- 

metric kernel does not carry over to this general situation. Moreover, the analogue of 
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