SUBALGEBRAS OF L^{∞} CONTAINING H^{∞}

BY

DONALD E. MARSHALL

University of California, Los Angeles, CA., USA

1. Introduction

Let H^{∞} be the algebra of bounded analytic functions on $D = \{z: |z| < 1\}$ and let L^{∞} be the Banach algebra of bounded measurable functions on $T = \{z: |z| = 1\}$ with the uniform norm. Then H^{∞} can be regarded as a uniformly closed subalgebra of L^{∞} by identifying each $f \in H^{\infty}$ with its boundary function.

If A is a closed subalgebra of L^{∞} , let $\mathcal{M}[A]$ denote its maximal-ideal space. K. Hoffman [13] has shown that each $\varphi \in \mathcal{M}[H^{\infty}]$ has a unique norm-preserving extension to a bounded linear functional on L^{∞} . For example, if $z \in D$ then evaluation at z is an element of $\mathcal{M}[H^{\infty}]$ and its extension is given simply by the Poisson kernel. Now if A is a closed subalgebra of L^{∞} containing H^{∞} , then the usual Gelfand topology on $\mathcal{M}[A]$ agrees with the weak-* topology that $\mathcal{M}[A]$ inherits as a compact subset of the dual space of L^{∞} . Consequently, each $f \in L^{\infty}$ is continuous on $\mathcal{M}[H^{\infty}]$ and harmonic on D. Moreover, if A and B are closed algebras such that $H^{\infty} \subset A \subset B \subset L^{\infty}$, then $\mathcal{M}[H^{\infty}] \supset \mathcal{M}[A] \supset \mathcal{M}[B] \supset$ $\mathcal{M}[L^{\infty}]$. Our main result is the following theorem:

THEOREM 1. Let A be a closed subalgebra of L^{∞} containing H^{∞} . Let A_I be the closed subalgebra of A generated by H^{∞} and $\{f^{-1} \in A: f \in H^{\infty}\}$. Then $\mathfrak{M}[A_I] = \mathfrak{M}[A]$.

When combined with a recent result of S. Y. Chang [7], Theorem 1 proves a conjecture of R. Douglas [9]. To state Douglas' conjecture, we let Q be a subset of L^{∞} and write $[H^{\infty}, Q]$ for the uniformly closed subalgebra of L^{∞} generated by H^{∞} and Q. An algebra of the form $[H^{\infty}, Q]$, where $Q \subset \{u: |u| = 1 \text{ a.e. on } T \text{ and } \bar{u} \in H^{\infty}\}$ is called a *Douglas algebra*. Since each positive function in $(L^{\infty})^{-1}$ is the modulus of a function in $(H^{\infty})^{-1}$, we see that A_I is a Douglas algebra whenever $H^{\infty} \subset A \subset L^{\infty}$ and we see that if A is a Douglas algebra, then $A = A_I$. Douglas' conjecture was that every uniformly closed subalgebra A of L^{∞} containing H^{∞} is a Douglas algebra, or, equivalently, that every such algebra A satisfies $A = A_I$. Now S. Y. Chang has proved that if A is a closed algebra lying between H^{∞} and