# ON THE REPRESENTATION OF A NUMBER AS THE SUM OF TWO SQUARES AND A PRIME 

BY<br>C. HOOLEY<br>Corpus Christi College, Cambridge

## 1. Introduction

In their celebrated paper "Some problems of partitio numerorum: III" [6] Hardy and Littlewood state an asymptotic formula, suggested by a purely formal application of their circle method, for the number of representations of a number $n$ as the sum of two squares and a prime number. The truth of this formula would imply that every sufficiently large number is the sum of two squares and a prime. No proof, even on the extended Riemann hypothesis (which we hereafter refer to as Hypothesis $R$ ), has hitherto been found. However, in another paper [7] they suggest that on Hypothesis $\dot{R}$ it should be possible to prove that almost all numbers can be so represented. This proof was effected by Miss Stanley [11], as were proofs (also on Hypothesis $R$ ) of asymptotic formulae for the number of representations of a number as sums of greater numbers of squares and primes. The dependence of her results on the unproved hypothesis was gradually removed by later writers, in particular by Chowla [2], Walfisz [13], Estermann [4] and Halberstam [5].

It is the purpose of this paper to shew that the original formula of Hardy and Littlewood is true on Hypothesis $R$. Our method depends on the fact that, as is easily seen, the number of representations of $n$ in the required form is equal to the sum

$$
\sum_{p<n} r(n-p),
$$

where $r(v)$ denotes the number of representations of $\nu$ as the sum of two integral squares. On noting that $r(v)$ may be expressed as a sum over the divisors of $v$, we see that our problem is related in character to the problem of determining the asymptotic behaviour of the sum

$$
\sum_{0<p+a \leq x} d(p+a),
$$

