THE CALCULATION OF THE ERGODIC PROJECTION FOR markov chains and processes with a countable INFINITY OF STATES

BY

DAVID G. KENDALL and G. E. H. REUTER
Magdalen College Oxford
Victoria University
Manchester

1. Introduction

1.1. Let $P \equiv\left\{p_{i j}: i, j=0,1,2, \ldots\right\}$ be the matrix of one-step transition probabilities for a temporally homogeneous Markov chain with a countably infinite set of states (labelled as $0,1,2, \ldots$). The probability $p_{i j}^{n}$ of a transition in n steps from state i to state j will then be the (i, j) th element of the matrix P^{n}, so that the specification of P (or equivalently of $\Delta \equiv P-I$) completely determines the system. It is known (Kolmogorov [24]) that the Cesàro limits

$$
\begin{equation*}
\pi_{i j}=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{r=1}^{n} p_{i j}^{r} \tag{1}
\end{equation*}
$$

always exist. Let Π denote the matrix whose (i, j) th element is $\pi_{i j}$, and consider
Problem A: Determine Π when P is given.
This problem has obvious importance for practical applications. A number of special techniques are available for its solution in particular cases (see, e.g., Feller [12], Ch. 15, Foster [14], [15] and Jensen [18]); also Feller [12], pp. 332-4, has given a general iterative method of solution. We shall give another (non-iterative) general method in § 2: it will involve the non-negative solutions of

$$
x_{j}=\sum_{\alpha} x_{\alpha} p_{\alpha j}
$$

such that $\Sigma x_{\alpha}<\infty$, and the non-negative solutions of

$$
y_{i}=\sum_{\alpha} p_{i \alpha} y_{\alpha}
$$

such that $\sup _{\alpha} y_{\alpha}<\infty$.

