The index theorem for topological manifolds

by

NICOLAE TELEMAN(¹)

State University of New York, Stony Brook, N.Y., U.S.A.

Dedicated to M. F. Atiyah and I. M. Singer

§0. Introduction

The famous Atiyah–Singer index theorem expresses the Fredholm index of any elliptic pseudo-differential operator on an arbitrary closed smooth manifold as the period of a universal algebraic combination of the Pontrjagin classes of the manifold, and of the Chern character of the symbol of the operator.

In 1969 M. F. Atiyah $[A_1]$ —see also $[A_2]$ —by taking as axioms some of the basic properties of the elliptic pseudo-differential operators of order zero on closed smooth manifolds, introduces the notion of abstract elliptic operator, for any compact topological space.

In 1970 I. M. Singer [Si] exposes a comprehensive program aimed to extend the theory of ellipic operators and their index to more general situations.

D. Sullivan's theorem $[Su_1]$ about existence of an orientation class in the K-theory, in the world of odd primes, of *PL*-bundles over *PL*-manifolds, gives evidence that at least the symbol of signature operators on *PL*-manifolds should exist, see I. M. Singer [Si] §3. One of the problems I. M. Singer formulated in [Si] was that of realizing, geometrically, signature operators on *PL*-manifolds, and at the same time, pointed out that such a realization could lead to an analytical proof of Novikov's theorem about the topological invariance of the rational Pontrjagin classes.

In 1975, L. G. Brown, R. G. Douglas, P. A. Fillmore [B.D.F.], and G. G. Kasparov [K] show, independently, in different contexts, that the stably-homotopic classes of abstract elliptic operators on the compact metric space X form an abelian group, which is naturally isomorphic to $K_0(X)$, the Spanier–Whitehead dual of $K^0(X)$. The same year P. Baum, W. Fulton, R. MacPherson [B.F.M.] prove the Riemann–Roch theorem for singular varieties.

In 1976, D. Sullivan discovers that any topological manifold of dimension ± 4 admits a unique—up to homeomorphisms close to the identity—Lipschitz structure.

^{(&}lt;sup>1</sup>) Partially supported by the N.S.F. Grant No. MCS 8102758.