CONTRIBUTIONS TO HARMONIC ANALYSIS

In Memory of the School of Analysis of H. Hahn, E. Helly, J. Radon, at the University of Vienna

By

H. REITER¹

University of Durham, King's College, Newcastle upon Tyne

1. The problem

Wiener's approximation theorem was the starting point of many developments in harmonic analysis. Carleman, in his proof of the theorem [1], introduced a new method which is of considerable generality and leads to the formulation and solution of new approximation problems. These problems are of the following type:

In the space² $L^1(G)$ of integrable functions on a locally compact abelian group G a closed linear subspace I is given which is invariant under "translations", i.e., which contains with a function $f_0(x)$ also all functions $f_0(ax)$, for arbitrary $a \in G$.

It is required to find, for a given function f(x) in $L^{1}(G)$, the number

$$\inf_{f_0 \in I} \int \left| f(x) - f_0(x) \right| dx$$

which indicates how closely f(x) may be approximated, in the metric of $L^1(G)$, by means of the functions belonging to *I*. Using geometrical language, this number is called the *distance* of f(x) from the linear subspace *I* and denoted by dist $\{f, I\}$.

As is well known, this distance is the norm in the quotient-space $L^1(G)/I$ (cf. [3], Theorem 22.11.4; since $L^1(G)$ is a (commutative) Banach algebra, with convolution as multiplication, and I an ideal in $L^1(G)$, $L^1(G)/I$ is actually a quotient-algebra). The exact calculation of the distance makes it possible to determine explicitly the structure of $L^1(G)/I$.

¹ The author wishes to acknowledge with thanks the opportunities for research accorded to him at the University of Reading where this paper was written during the tenure of a temporary lectureship in 1955-56.

² Notation and terminology are as usual; cf., e.g., [4]. In particular, dx denotes the Haar measure, and integration extends over the whole group G unless otherwise specified.