A BEURLING-TYPE THEOREM

BY

BORIS KORENBLUM

Tel-Aviv University, Tel-Aviv, Israel

§1. Introduction and statement of the main result

In this paper we shall be concerned primarily with the linear topological space $A^{-\infty}$ whose elements are holomorphic functions

$$f(z) = \sum_{0}^{\infty} a_{\nu} z^{\nu}$$

in the unit disk $U = \{z: |z| \le 1\}$ satisfying

$$|f(z)| \leq C_f (1 - |z|)^{-n_f} \quad (z \in U)$$
 (1.1)

or equivalently,

$$\log^+|a_{\nu}| = O \ (\log \nu) \quad (\nu \to \infty).$$

 $A^{-\infty}$ can be thought of as the union of Banach spaces A^{-n} (n > 0), the norm in each A^{-n} being defined as follows:

$$||f||_{-n} = \sup_{z \in U} \{ |f(z)| (1 - |z|)^n \} < \infty.$$
(1.2)

The topology in $A^{-\infty}$ is introduced in a standard way [6]. Clearly, $A^{-\infty}$ is a topological algebra under pointwise multiplication. It is the smallest algebra containing the disk algebra $A^{(1)}$ and closed under differentiation.

The dual of $A^{-\infty}$ is the topological algebra A^{∞} whose elements are functions F(z) holomorphic in U and infinitely differentiable in \overline{U} :

$$F(z) = \sum_{0}^{\infty} b_{\nu} z^{\nu} \quad (b = O(\nu^{-k}) \quad \forall k > 0).$$
(1.3)

The linear functionals in $A^{-\infty}$ are given by the formula

$$F(f) = \frac{1}{2\pi i} \lim_{r \to 1^-} \int_{\partial U} \overline{F}(\zeta) f(r\zeta) \frac{d\zeta}{\zeta} = \sum_{0}^{\infty} \overline{b}_{\nu} a_{\nu}.$$
(1.4)

⁽¹⁾ A is the algebra of all functions continuous in \vec{U} and analytic in U with sup-norm and pointwise multiplication.

^{18 - 772903} Acta mathematica 138. Imprimé le 30 Juin 1977