The existence of surfaces of constant mean curvature with free boundaries

by

MICHAEL STRUWE(${ }^{1}$)

ETH-Zentrum
Zürich, Switzerland

1. Introduction

Suppose S is a surface in \mathbf{R}^{3} diffeomorphic to the standard sphere S^{2} by a smooth diffeomorphism $\Psi: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ of class C^{4}, and let $H \in \mathbf{R}$. In this paper we give a sufficient condition for the existence of an unstable disc-type surface of constant mean curvature H with boundary on S and intersecting S orthogonally along its boundary. In isothermal coordinates such a surface may be parametrized by a map $X \in C^{2}\left(B ; \mathbf{R}^{3}\right) \cap C^{1}\left(\bar{B} ; \mathbf{R}^{3}\right)$ of the unit disc

$$
B=B_{1}(0)=\left\{(u, v)=w \in \mathbf{R}^{2} \mid u^{2}+v^{2}<1\right\}
$$

into \mathbf{R}^{3} satisfying the following conditions:

$$
\begin{gather*}
\Delta X=2 H X_{u} \wedge X_{v} \tag{1.1}\\
\left|X_{u}\right|^{2}-\left|X_{v}\right|^{2}=0=X_{u} \cdot X_{v} \tag{1.2}\\
X(\partial B) \subset S \tag{1.3}\\
\partial_{n} X(w) \perp T_{X(w)} S, \quad \forall w \in \partial B . \tag{1.4}
\end{gather*}
$$

Here $X_{u}=(\partial / \partial u) X$, etc., " \wedge " denotes the exterior product in \mathbf{R}^{3},"." denotes the scalar product, n is the outward unit normal on ∂B, " \perp " means orthogonal, and $T_{Q} S$ denotes the tangent space to S at $Q \in S$.

[^0]
[^0]: ${ }^{(1)}$ This research was supported by the Sonderforschungsbereich 72 of the Deutsche Forschungsgemeinschaft

