The existence of surfaces of constant mean curvature with free boundaries

by

MICHAEL STRUWE(1)

ETH-Zentrum Zürich, Switzerland

1. Introduction

Suppose S is a surface in \mathbb{R}^3 diffeomorphic to the standard sphere S^2 by a smooth diffeomorphism $\Psi: \mathbb{R}^3 \to \mathbb{R}^3$ of class C^4 , and let $H \in \mathbb{R}$. In this paper we give a sufficient condition for the existence of an unstable disc-type surface of constant mean curvature H with boundary on S and intersecting S orthogonally along its boundary. In isothermal coordinates such a surface may be parametrized by a map $X \in C^2(B; \mathbb{R}^3) \cap C^1(\overline{B}; \mathbb{R}^3)$ of the unit disc

$$B = B_1(0) = \{(u, v) = w \in \mathbb{R}^2 \mid u^2 + v^2 < 1\}$$

into \mathbf{R}^3 satisfying the following conditions:

$$\Delta X = 2HX_u \wedge X_v \tag{1.1}$$

$$|X_{u}|^{2} - |X_{v}|^{2} = 0 = X_{u} \cdot X_{v}$$
(1.2)

$$X(\partial B) \subset S, \tag{1.3}$$

$$\partial_n X(w) \perp T_{X(w)} S, \quad \forall w \in \partial B.$$
 (1.4)

Here $X_u = (\partial/\partial u)X$, etc., " \wedge " denotes the exterior product in \mathbb{R}^3 , " \cdot " denotes the scalar product, *n* is the outward unit normal on ∂B , " \perp " means orthogonal, and T_QS denotes the tangent space to S at $Q \in S$.

⁽¹⁾ This research was supported by the Sonderforschungsbereich 72 of the Deutsche Forschungsgemeinschaft