C*-ALGEBRAS OF ALMOST PERIODIC PSEUDO-DIFFERENTIAL OPERATORS

BY

and

L. A. COBURN,

R. D. MOYER

I. M. SINGER⁽¹⁾

Yeshiva University Belfer Graduate School of Science New York, N.Y. 10033 USA University of Kansas Lawrence, Kansas 66044 USA Massachusetts Institute of Technology Cambridge, Massachusetts 02138 USA

0. Introduction

Our basic goal is to develop an index theory for almost periodic pseudo-differential operators on \mathbb{R}^n . The prototype of this theory is [5] which has direct application to the almost periodic Toeplitz operators. Here, we study index theory for a C^* -algebra of operators on \mathbb{R}^n which contains most almost periodic pseudo-differential operators such as those arising in the study of elliptic boundary value problems for constant coefficient elliptic operators on a half space with almost periodic boundary conditions.

Our program is as follows: We begin with a discussion of a C^* -algebra with symbol which contains all of the classical pseudo-differential operators on \mathbb{R}^n . Precisely, if A is a bounded operator on $L^2(\mathbb{R}^n)$ and $\lambda \in \mathbb{R}^n$, let $\varepsilon_{\lambda}(A)$ denote the conjugate of A with the function $e^{i\lambda \cdot x}$ acting as a multiplier denoted e_{λ} . We first study the C^* -algebra of those A for which the function $\lambda \mapsto \varepsilon_{\lambda}(A)$ has a strongly continuous extension to the radial compactification of \mathbb{R}^n . The restriction of this function to the complement of \mathbb{R}^n then gives the usual (principal) symbol $\sigma(A)$ when A is a pseudo-differential operator of order zero (of a suitable type). We characterize the Fourier multipliers in this algebra and the image of the symbol map. We give sufficient conditions for the usual construction of a pseudo-differential operator as well as one of Friedrichs' constructions to give an element of this algebra. In particular, the latter gives a positive linear right inverse for the symbol map—at least when the symbol is sufficiently smooth. In fact, we show in § 3 that the Friedrichs map is a right inverse to the symbol map in the almost periodic case. We expect this to be true in the general case also.

⁽¹⁾ Research supported by grants of the National Science Foundation.