Characterizations of almost surely continuous *p*-stable random Fourier series and strongly stationary processes

by

M. B. MARCUS $(^1)$ and G. PISIER $(^1)$

Texas A&M University College Station, TX, U.S.A. Université Paris VI Paris, France

Introduction

In 1973, X. Fernique showed that Dudley's "metric entropy" sufficient condition for the a.s. continuity of sample paths of Gaussian processes, is also necessary when the processes are stationary ([6], [7], [10]). In this paper we extend the Dudley-Fernique theorem to strongly stationary *p*-stable processes, 1 .

Let G be a locally compact Abelian group with dual group Γ . We say that a real (resp. complex) random process $(X(t))_{t \in G}$ is a strongly stationary p-stable process, $0 , if there exists a finite positive Radon measure m on <math>\Gamma$ such that for all $t_1, \ldots, t_n \in G$ and real (resp. complex) numbers $\alpha_1, \ldots, \alpha_n$ we have

$$E \exp i \operatorname{Re} \sum_{j=1}^{n} \tilde{a}_{j} X(t_{j}) = \exp - \int_{\Gamma} \left| \sum_{j=1}^{n} \tilde{a}_{j} \gamma(t_{j}) \right|^{p} dm(\gamma).$$

We associate with $(X(t))_{t \in G}$ a pseudo-metric d_X on G defined by

$$d_X(s,t) = \left(\int_{\Gamma} |\gamma(s) - \gamma(t)|^p \, m(d\gamma)\right)^{1/p}, \quad \forall s, t \in G.$$
(0.1)

Let K be a fixed compact neighborhood of the unit element of G. Let $N(K, d_X; \varepsilon)$ denote the smallest number of open balls of radius ε , in the pseudo-metric d_X , which cover K. We will always assume that K is metrizable. We can now state our main result.

^{(&}lt;sup>1</sup>) This research was supported in part by a grant from the National Science Foundation.