## The Hausdorff dimension of the limit set of a geometrically finite Kleinian group

by

## PEKKA TUKIA

University of Helsinki, Helsinki, Finland

## A. Introduction

We consider in this paper groups of Möbius transformations of  $\mathbf{R}^n = \mathbf{R}^n \cup \{\infty\}$ . Such a group is called *Kleinian* if it acts discontinuously somewhere in  $\mathbf{R}^n$ . The action of G extends to the (n+1)-dimensional hyperbolic space  $\mathbf{H}^{n+1} = \mathbf{R}^n \times (0, \infty)$  and G is geometrically finite if there is a hyperbolic fundamental polyhedron with a finite number of faces for the action of G in  $\mathbf{H}^{n+1}$  (for a more precise definition see [15, 1B]). We prove in this paper that the *Hausdorff dimension*  $\dim_{\mathbf{H}} L(G)$  of the limit set L(G) of a geometrically finite Kleinian group G of  $\mathbf{R}^n$  is less than n (Theorem D).

Our proof of this theorem is based on the following observation. Assume that G is of compact type, i.e. if  $\tilde{\mathbf{H}}^{n+1} = \mathbf{H}^{n+1} \cup \tilde{\mathbf{R}}^n$ , then  $(\tilde{\mathbf{H}}^{n+1} \setminus L(G))/G$  is compact. Then there is an integer q such that if we divide any n-cube Q of  $\mathbf{R}^n$  into  $q^n$  equal subcubes, then at least one of these subcubes does not touch L(G). Let  $\mathcal{L}(Q)$  be the family of these subcubes which touch L(G). Then the n-measures of  $Q' \in \mathcal{L}(Q)$  do not add up to the n-measure of Q and we get

$$\sum_{Q' \in \mathcal{A}(Q)} d(Q')^a \le c d(Q)^a \tag{A1}$$

for  $\alpha = n$  and  $c = 1 - 1/q^n$ . Obviously, this remains valid for slightly smaller  $\alpha < n$  and slightly bigger c < 1. Passing now to the families  $\mathcal{L}(Q')$ ,  $Q' \in \mathcal{L}(Q)$ , we get an inductive argument which shows that the Hausdorff dimension of L(G) cannot exceed  $\alpha < n$ .

The existence of such q is based on a compactness argument. If  $r=d(Q\cap L(G))/d(Q)$  is small, the existence of such q is clear. On the other hand, if say  $r\ge 1/2$ , let  $z_Q$  be the center of Q and let  $s_Q$  be its side length. If  $\bar{z}_Q=(z_Q,s_Q)\in \mathbf{H}^{n+1}$ , the hyperbolic distance of  $\bar{z}_Q$  from the hyperbolic convex hull  $H_G$  of L(G) (see Section