Hausdorff dimension and capacities of intersections of sets in *n*-space

by

PERTTI MATTILA

University of Helsinki, Helsinki, Finland

1. Introduction

Suppose A and B are Borel sets in the Euclidean n space \mathbb{R}^n . If they are sufficiently nice, for example C^1 submanifolds or rectifiable of dimensions k and m with $k+m \ge n$, then according to a well-known formula of integral-geometry

$$\int \mathscr{H}^{k+m-n}(A \cap fB) \, d\lambda_n f = c(k,m,n) \, \mathscr{H}^k(A) \, \mathscr{H}^m(B),$$

where \mathcal{H}^s stands for the *s* dimensional Hausdorff measure and λ_n is an invariant measure on the group of isometries of \mathbb{R}^n . Thus in this case there is a precise relation between the measures of *A* and *B* and of those of the intersections $A \cap fB$. The object of this paper is to study to what extent there are such relations, necessarily less precise, if either *A* or both *A* and *B* are completely general except for measurability assumptions. Thus various Cantor type sets, graphs of nowhere differentiable functions etc. should be included in our theory. Particular examples are the self-similar fractals, which Mandelbrot [MB] has considered in connection of several physical phenomena and for which Hutchinson [H] has presented a unified theory.

First to consider this problem was Marstrand [MJ] who explored the geometric properties of fractional dimensional subsets of the plane \mathbb{R}^2 . He proved that if $A \subset \mathbb{R}^2$ is \mathscr{H}^s measurable with $0 < \mathscr{H}^s(A) < \infty$, 1 < s < 2, then for \mathscr{H}^s almost all $x \in A \dim A \cap l = s - 1$ and $\mathscr{H}^{s-1}(A \cap l) < \infty$ for almost all lines *l* through *x*. He also showed by an example that $\mathscr{H}^{s-1}(A \cap l)$ may be zero for almost all lines *l* through any point of *A*. Marstrand's theorem was generalized to subsets of \mathbb{R}^n with lines replaced by *m* planes in [MP1]. In [MP2] a potential-theoretic approach to this problem was presented. It was shown that