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This paper contains the proof of the assertion in its title. My motivation for considering 

this problem was the following. Let M be a compact differentiable manifold and let D 

be an elliptic differential operator between the spaces of C ~ sections of two bundles on 

M. In [4] M. F. Atiyah proves that if index D>0, then, for every Galois covering 

AT/---~M, the operator / )  induced by D on ~ /has  nontrivial L 2 solutions/)u=0. Atiyah 

goes on to ask whether the same is true for coverings which are not Galois. His guess is 

that the answer is negative in general but that the counter-example will be difficult to 

construct. The simplest situation to consider in this connection is that of a surface and 

the operator whose index is the Euler characteristic. For infinite coverings, since every 

L 2 harmonic function would be constant and nonzero constants are not in L 2, Atiyah's 

question reduces to the question of existence of L 2 harmonic forms of degree one. It is 

shown here that a counter-example will not be found in this simple setting. 

From now on S will denote an oriented, compact surface of genus g=g(S)>l 

equipped with a smooth Riemannian metric. S--%S will be an arbitrary (usually infinite) 

covering of S, and A = A will be the Laplace operator on S with respect to the pull back 

metric. A differential (exterior form of degree one) on S is harmonic, i.e. Ao)=0, and in 

L 2 if and only if (cf. [15], Theorem 26) 

and 

dw=d~w=O 

oo. 
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