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Introduction 

This paper  continues the  s tudy  of non  self-adjoint operator algebras on Hi lber t  

space which began in  [1]. Chapter  1 concerns di lat ion theory.  The ma in  results (1.2.2 

and  its corollary) imply  t ha t  every commut ing  n- tuple  of operators having a general  

compact  set X___ C n as a "complete"  spectral set has a (commuting) normal  di la t ion whose 

jo in t  spectrum is contained in  ~X, the Silov b o u n d a r y  of X relative to the ra t ional  

funct ions which are cont inuous on X. This is a direct general izat ion of a known  di la t ion 

theorem for single operators having for a spectral set a compact  set X_~ C with connected 

complement ,  and  i t  seems to clarify the relat ion between spectral sets and  normal  

dilations. I n  section 1.3 we discuss non-normal  dilat ions and  present  a result  along these 

lines. 
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