REAL HYPERSURFACES IN COMPLEX MANIFOLDS

BY

S. S. CHERN and J. K. MOSER

University of California New York University Berkeley, Cal., USA New York, N. Y., USA

Introduction

Whether one studies the geometry or analysis in the complex number space C_{n+1} , or more generally, in a complex manifold, one will have to deal with domains. Their boundaries are real hypersurfaces of real codimension one. In 1907, Poincaré showed by, a heuristic argument that a real hypersurface in C_2 has local invariants under biholomorphic transformations [6]. He also recognized the importance of the special unitary group which acts on the real hyperquadrics (cf. § 1). Following a remark by B. Segre, Elie Cartan took, up again the problem. In two profound papers [1], he gave, among other results, a complete solution of the equivalence problem, that is, the problem of finding a complete system of analytic invariants for two real analytic real hypersurfaces in C_2 to be locally equivalent under biholomorphic transformations.

Let $z^1, ..., z^{n+1}$ be the coordinates in \mathbb{C}_{n+1} . We study a real hypersurface M at the origin 0 defined by the equation

$$r(z^1, ..., z^{n+1}, \bar{z}^1, ..., \bar{z}^{n+1}) = 0, \tag{0.1}$$

where r is a real analytic function vanishing at 0 such that not all its first partial derivatives are zero at 0. We set

$$z = (z^1, ..., z^n), \quad z^{n+1} = w = u + iv.$$
 (0.2)

After an appropriate linear coordinate change the equation of M can be written as

$$v = F(z, \bar{z}, u), \tag{0.3}$$

where F is real analytic and vanishes with its first partial derivatives at 0. Our basic assumption on M is that it be nondegenerate, that is, the Levi form

This work was partially supported by the National Science Foundation, Grants GP-20096 and GP-34785X. We wish to thank the Rockefeller University for their hospitality where the first author was a visitor in the Spring of 1973.

¹⁵⁻⁷⁴²⁹⁰² Acta mathematica 133. Imprimé le 31 Janvier 1975